
1 / 22

YASMIN: Yet Another Scheduling MIddleware

for exploratioN

Benjamin Rouxel∗

Sebastian Altmeyer†

Clemens Grelck∗

University of Amsterdam∗, Augsburg University†

Middleware, December 2021



2 / 22

Embedded Real-Time Systems

Embedded

• Application specific

• Dedicated systems

Real-Time

• Need to enforce the timing



3 / 22

Enforcing timing

Application

as tasks
• Periodic/Sporadic

• DAG/SDF

• Simple/Multi-version tasks

Schedulability

analysis

• He et al, 2021

• Davis et al, 2009

Off-line scheduler

• Rouxel et al, 2019

• Roeder et al, 2020

Schedule

deployment

• OS-based

• Molisson et
al, 2013



3 / 22

Enforcing timing

Application

as tasks
• Periodic/Sporadic

• DAG/SDF

• Simple/Multi-version tasks

Schedulability

analysis

• He et al, 2021

• Davis et al, 2009

Off-line scheduler

• Rouxel et al, 2019

• Roeder et al, 2020

Schedule

deployment

• OS-based

• Molisson et
al, 2013



3 / 22

Enforcing timing

Application

as tasks
• Periodic/Sporadic

• DAG/SDF

• Simple/Multi-version tasks

Schedulability

analysis

• He et al, 2021

• Davis et al, 2009

Off-line scheduler

• Rouxel et al, 2019

• Roeder et al, 2020

Schedule

deployment

• OS-based

• Molisson et
al, 2013



4 / 22

Two Scheduling Schemes

Goal
Deciding on which core and in which order tasks will run

Off-line

• Static scheduling & mapping

• Create a gantt-chart:

• Need on-line dispatcher

On-line



4 / 22

Two Scheduling Schemes

Goal
Deciding on which core and in which order tasks will run

Off-line

• Static scheduling & mapping

• Create a gantt-chart:

• Need on-line dispatcher

On-line

• Dynamic scheduling & mapping

• Priority assignment

• Mapping strategy



5 / 22

How to deploy a schedule?



6 / 22

Deploying schedules on Linux

The offer

• PREEMPT RT patchset

• Schedulable element:
◦ POSIX Thread

• Scheduling policies:
◦ FIFO, RoundRobin, Deadline

• Periodicity:
◦ Alarm, Busy waiting

• Switching between policies

• Adding new policies is hard

• No task dependency
• No multi-version

• Very limited
• No off-line schedule support
• Limited #priorities

• Limited #alarms



7 / 22

Brief overview of other solutions

OS schedulers

• Lower range of supported platforms

• Lack of heterogeneity support

• Limited task models

• Limited scheduling strategies

• More or Less easy to implement
your own policy

Middleware

• Code not available/outdated

• Limited task models

• Limited to one or two strategies

• More or Less easy to implement
your own policy



8 / 22

YASMIN: Yet Another Scheduling MIddleware for exploratioN

Principles

• Middleware library

• User-space scheduling

• Shielded processors

• Separate scheduler thread

• Unified API (switch at compile time)

• Schedule units: components/tasks

Off-line schedulers

• Follow a pre-computed schedule

• On-line dispatcher

On-line schedulers

• Scheduling decided at run-time

• Mapping can be done at run-time

• Priority ordered queue



9 / 22

Benefits of a Middleware

• Customisation: implement SOA scheduling algorithms

• Exploration: best fit scheduling algorithm

• Flexibility: task model support

• Adaptability: environmental constraints

• Maintainability: easy system upgrade

• Portability: easy system switch

• Control: timing control



10 / 22

Overview of YASMIN

• Written in C

• Target POSIX system

• Compiled & linked to end-user application

• Requires a configuration Header file

• No dynamic allocation

• Bounded loops



11 / 22

Features

• Global/Partitioned mapping

• Off-line/On-line scheduling

• Off-line/On-line priority assignment

• Pre-emption

• Components migration

• Computing unit heterogeneity

• Automatic version selection

• ...



12 / 22

Task models

• Periodic/Sporadic tasks

• DAG tasks

• After transformation:
Synchronous Dataflow graphs, Fork-join graphs, ...

• Multi-version tasks



13 / 22

Evaluations

Comparisons

• Scheduling overhead against Mollison and Anderson, RTAS’2013

• Task activation latency against Linux & Litmus

Application

• TeamPlay drone use-case from SkyWatch



14 / 22

Mollison and Anderson, RTAS’2013

In a nutshell

• User library

• Pre-emptive G-EDF scheduling policy

• Spawns threads, tasks are scheduled within threads

• No separate scheduler thread

• Test-and-set synchronisation of the global queue

• Rely on alarm

• Target Architecture: x86

• No heterogeneity

• Only periodic task model



15 / 22

Overhead vs Mollison and Anderson

Experimental setup

• Platform
◦ Odroid-XU4
◦ ARM big.LITTLE 2x4 cores
◦ Mali GPU

• Synthetic workload
◦ #tasks: [20;120]
◦ big cores: 2,3

(+1 for our scheduler thread)
◦ Utilisation: [0.2;2]
◦ #tasksets: 5 per configuration



15 / 22

Overhead vs Mollison and Anderson

Experimental setup

• Platform
◦ Odroid-XU4
◦ ARM big.LITTLE 2x4 cores
◦ Mali GPU

• Synthetic workload
◦ #tasks: [20;120]
◦ big cores: 2,3

(+1 for our scheduler thread)
◦ Utilisation: [0.2;2]
◦ #tasksets: 5 per configuration



16 / 22

Cyclictest

In a nutshell

• Measure accurately & precisely measure latency

• Sporadic tasks

• Available in the RT-apps collection by the Linux/PREEMPT RT patch
team

• Adapted to SCHED DEADLINE, LitmusˆRT, and Yasmin



17 / 22

Latency with cyclictest

Experimental Setup

• Spawns 6 threads, concurrently woken up 10000 times every 10ms

• Save 1 thread for our scheduler and 1 thread for the OS

• Generate interfering load: Stress-NG
◦ Configured to spawn 8 threads that mess up with: cache, computation,

timer events, scheduler.

OS Cyclictest Latency in µs
version < min,max , avg >

Linux
+PREEMPT RT

Yasmin 90, 1481, 500

4.14.134-rt63 RTapps 176, 1550, 463

LitmusˆRT
Yasmin 67, 318, 170
RTapps 33, 222, 74

4.9.30-litmus
litmus+GSN-EDF 35, 247, 84
litmus+P-RES 988, 1206, 1027



17 / 22

Latency with cyclictest

Experimental Setup

• Spawns 6 threads, concurrently woken up 10000 times every 10ms

• Save 1 thread for our scheduler and 1 thread for the OS

• Generate interfering load: Stress-NG
◦ Configured to spawn 8 threads that mess up with: cache, computation,

timer events, scheduler.

OS Cyclictest Latency in µs
version < min,max , avg >

Linux
+PREEMPT RT

Yasmin 90, 1481, 500

4.14.134-rt63 RTapps 176, 1550, 463

LitmusˆRT
Yasmin 67, 318, 170
RTapps 33, 222, 74

4.9.30-litmus
litmus+GSN-EDF 35, 247, 84
litmus+P-RES 988, 1206, 1027



18 / 22

Industrial Use-case

• Fixed-wings drone

• Fly above the sea

• Detect life boats

• Contact rescue teams



19 / 22

System overview



20 / 22

Drone tasks

Fetch new frame
C: 44μs

Extract EXIF
C: 168μs

FC msg handler
C: 170ms
T: 100Hz

Augment EXIF
C: 57μs

Store
C: 8μs

Detect objects

Estimate speed

Highlight objects

Create packet
C: 10μs

Encode

Send
C: 10μs

GPU-C: 130ms 

CPU-C: 230ms 

GPU-C: 108ms 

CPU-C: 224ms 

GPU-C: 170ms 

CPU-C: 242ms 

Plain-C: 3ms 

AES-C: 100ms 



21 / 22

Scheduling exploration

Experimental setup

• Handcrafted mission

• About 1000 processed frames



22 / 22

Conclusion & Future work

Summary

• Yasmin: a middleware to deploy schedule on behalf of the kernel

• Implemented as a library to link with the end-user application

• Better overhead than SOA

• Small overhead & latency

Future work

• Improve aperiodic task management

• Support for asynchronous accesses to accelerators

• Allow multi-rate task graphs

https://bitbucket.org/uva-sne/coordinationruntime



22 / 22

Conclusion & Future work

Summary

• Yasmin: a middleware to deploy schedule on behalf of the kernel

• Implemented as a library to link with the end-user application

• Better overhead than SOA

• Small overhead & latency

Future work

• Improve aperiodic task management

• Support for asynchronous accesses to accelerators

• Allow multi-rate task graphs

https://bitbucket.org/uva-sne/coordinationruntime


