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ABSTRACT
Commercial-off-the-shelf (COTS) heterogeneous platforms provide
immense computational power, but are difficult to program and to
correctly use when real-time requirements come into play: A sound
configuration of the operating system scheduler is needed, and a
suitable mapping of tasks to computing units must be determined.
Flawed designs lead to sub-optimal system configurations and, thus,
to wasted resources or even to deadline misses and system failures.

We propose YASMIN, a middleware to schedule end-user applica-
tions with real-time requirements in user space and on behalf of the
operating system. YASMIN combines an easy-to-use programming
interface with portability across a wide range of architectures. It
treats heterogeneity on COTS embedded platforms as a first-class
citizen: YASMIN supports multiple functionally equivalent task
implementations with distinct extra-functional behaviour. This en-
ables the system designer to quickly explore different scheduling
policies and task-to-core mappings, and thus, to improve overall
system performance.

In this paper, we present the design and implementation of YAS-
MIN and provide an analysis of the scheduling overhead on an
Odroid-XU4 platform. We demonstrate the merits of YASMIN on
an industrial use-case involving a search-and-rescue drone.

CCS CONCEPTS
• Computer systems organization → Real-time operating
systems; Embedded software; • Software and its engineering →
Software libraries and repositories.
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1 INTRODUCTION
Commercial-off-the-shelf (COTS) heterogeneous parallel platforms
are very popular as they offer (in this hardware segment) unprece-
dented computational power at low cost. They typically combine a
potentially heterogeneous multi-core CPU (e.g. ARM big.LITTLE)
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with a powerful GPU and, possibly, various additional hardware
accelerators [27].

A large segment of embedded computing must meet real-time
constraints while not being safety-critical, e.g. Internet-of-Things
(IoT) [39] or edge computing [37], including a range of cyber-
physical systems (CPS) [8]. Supporting real-time applications tar-
geting such platforms is insanely complex as all required analyses
need to be adapted for each type of execution unit (core, accelerator,
etc.). Moreover, heterogeneous parallel architectures immediately
create a complex scheduling and mapping problem of application
tasks to execution units with highly different timing and energy
properties. Furthermore, guaranteeing real-time properties on such
systems after deploying these applications is often a nightmare
as the execution environment is mostly constrained by vendor-
provided (or vendor-adapted) operating systems (OS), which most
often lack support for real-time techniques as exhibited by the
research community.

To enforce timing properties when deploying real-time applica-
tions, designers have the choice to use a modified kernel, e.g. Lit-
musˆRT [7], or real-time patches for general-purpose OS [5]. How-
ever, these solutions preclude using specific hardware drivers used
in vendor-specific OS setups and, therefore, are often of limited
use in practice. For instance, accelerators might not be usable with-
out proprietary drivers. In fact, COTS embedded heterogeneous
platforms are mostly bound to specific OS versions. For example,
the Apalis TK1 [38] board can only run a Linux v3.10 kernel. Like-
wise, proprietary device drivers, mainly for the embedded GPU and
further accelerators, set tight limits to change or modify the OS,
not to mention that kernel modifications are cumbersome, difficult,
error-prone and non-portable.

We propose a novel middleware: YASMIN (Yet Another Scheduling
MIddleware for exploratioN ) that facilitates the deployment of real-
time applications on heterogeneous COTS platforms running on
top of a COTS OS. Compared to previous real-time-related attempts
(see Akesson et al. [4] for a recent survey), YASMIN is, to the best
of our knowledge, the first middleware to embrace heterogeneity
as a central design concern.

The survey by Akesson et al. further shows that industrial prac-
titioners are very keen on using COTS OS in conjunction with
libraries to deploy real-time systems. Hence, YASMIN precisely
matches industrial needs:

• Customisation: YASMIN is highly customisable through clear
separation of concerns (mapping, scheduling, priority order-
ing . . . ). Thus, adding a new state-of-the-art technique to
YASMIN is much simpler and faster than adding it into an
OS kernel such as Linux.

https://doi.org/10.1145/3464298.3493402
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• Adaptability: Through support for multiple versions of tasks
YASMIN permits users to change the effective behaviour
of the application at run-time to address evolving environ-
mental characteristics, such as the detection of faults or
cyber-attacks, low battery status, etc.

• Maintainability: YASMIN is not dependent on any specific
OS or OS version. Hence, upgrading a system to benefit from
security patches or bug fixes is considerably easier using
YASMIN than with a deployment environment bound to a
specific kernel, e.g. [3].

• Portability: YASMIN runs on top of any POSIX-compliant
OS and is not bound to any specific platform. Therefore,
executing an application compiled with YASMIN on different
platforms merely requires recompilation.

• Compatibility: When a specific platform has no RTOS sup-
port, e.g. due to vendor-specific drivers, YASMIN provides
more timing guarantees than what a vanilla OS has on offer:
soft real-time guarantees can be given on a vanilla Linux
[32].

• Flexibility: Using YASMIN with different workload packages
supports different configurations for each package, such as
different task models, scheduling strategies, etc. This prop-
erty is shown by the aforementioned survey [4] to be a
prerequisite to deploy industrial systems.

• Design space exploration: Decidingwhich scheduling policy is
the best for a system is rarely trivial. YASMIN offers multiple
scheduling options, which can be switched at compile time.
Hence, RT-experts and non-experts alike can explore the
scheduling design space to select the technique that delivers
best performance.

At the time ofwriting YASMIN supports the following scheduling
policies: global earliest deadline first (G-EDF), partitioned earliest
deadline first (P-EDF), global fixed priority (G-FP) and partitioned
fixed priority (P-FP). Furthermore, YASMIN supports the following
priority assignments: deadline-monotonic (DM), rate-monotonic
(RM) or user-defined (UDF).

The range of scheduling policies might not seem particularly
exotic or broad, but in our view this is an orthogonal issue: adding
further scheduling policies to YASMIN would first and foremost
be an engineering effort, not a research effort. The design of YAS-
MIN, both concerning the API and the implementation, very much
facilitate extension in this direction. More importantly, the pro-
posed design of a versatile, extendable and portable user space
middleware immediately shows its merits: scheduling policies are
implemented once in the library and immediately become available
to all application programs making use of YASMIN.

YASMIN is part of a more comprehensive endeavour to facilitate
rapid prototyping and deployment of non-safety-critical real-time
applications targeting heterogeneous parallel COTS platforms. Ap-
plication components, their functional interplay, timing properties
and requirements can be specified in a high-level coordination
DSL [30]. Following a mostly automated generative approach [32],
our compiler tool chain turns a high-level description of an appli-
cation into C code ready for binary code generation by a target-
specific C compiler. The whole tool chain, including YASMIN, is
available under a GPLv3 licence [2].

The remainder of this paper is organised as follows: In Section 2
we discuss fundamental assumptions such as the underlying task
model. In Section 3 we present design and implementation of YAS-
MIN and elaborate on the various options and design choices we
support. We empirically validate YASMIN in Section 4, and we
apply it on an industrial use-case in Section 5. We review related
work in Section 6 and draw conclusions in Section 7.

2 APPLICATION MODEL
We consider non-safety-critical real-time systems composed of a set
of sporadic or periodic tasks. Each task represents an indivisible (or
atomic) feature of the end-user application. The minimal time inter-
val 𝑇 (or period) separating two consecutive task activations must
be provided to our scheduler. In addition, we allow non-periodic
tasks managed by the end-user where no regular pattern can be
given to the scheduler. Real-time tasks must complete their execu-
tion before a deadline 𝐷 relative to the period. We support all three
common deadline schemes: implicit (𝐷 = 𝑇 ), constrained (𝐷 ≤ 𝑇 )
and arbitrary to the period.

To embrace heterogeneity we adopt recent task models repre-
senting each task with a set of versions [30] or variants [22]. All
versions of a single task are functionally equivalent and expose
the same interface (i.e. inputs, outputs), but each one has its own
distinct non-functional behaviour, i.e. worst-case execution time
(WCET), energy consumption, etc.

The immediate motivation for multi-version tasks lies in the
scheduling and mapping complexity induced by heterogeneous
platforms, where it is commonly not a-priori decidable which tasks
should exclusively run on the CPU and which should exclusively
run on one (or more) of the various accelerators. Consider an ap-
plication with two tasks 𝐴, 𝐵, and each task has two versions: one
running 100% on the CPU and one running 1% of the time on the
CPU and 99% on the GPU. These two tasks are independent and
have the same period. Hence, they could potentially run in parallel.
On the target platform, however, only a single GPU is available.
Hence, the two GPU versions of 𝐴 and 𝐵 cannot execute in parallel.
However, the presence of different versions allows us to run the
GPU version of 𝐴 at the same time as the CPU version of 𝐵 or vice
versa. This would be beneficial as long as the CPU version does not
take longer than running the two GPU versions one after the other.
We empirically demonstrated in [30] that deciding which version to
execute at each task instance is not straightforward. This question
is rather part of the scheduling problem, and it is common that
depending on global circumstances and objectives, the same task
may sometimes preferably be executed on the CPU and in other
cases on the GPU, see [30] for details.

The versatility of multi-version tasks goes beyond the above.
The computing unit heterogeneity may exhibit different ISAs per
core. In the presence of generic ISA compatibility multi-version
tasks can still provide task implementations particularly optimised
for execution on a specific type of execution unit. Furthermore, ap-
plication designers could easily play with implementation variants
that expose different non-functional behaviour (e.g. energy, time,
security) and let YASMIN automatically select the best suited one
in a certain context and under concrete objectives.
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YASMIN further supports tasks with precedence constraints,
so-called directed acyclic (task-)graphs (DAG). Other graph-based
task models, such as Synchronous DataFlow (SDF) [23], must a-
priori be transformed (or expanded for SDF) to comply with a DAG
task model. Each edge in a graph represents a causal dependence
between two tasks. This may be a data dependency, or it can be used
to prevent side-effects between them. The source node of an edge
must complete its execution before activating the sink. As in most
graph-based task models, YASMIN supports activation patterns and
relative deadlines described at the graph level: The whole graph
is considered either sporadic or periodic. Only the root node(s)
(which have no predecessors) is activated at an activation event
triggering all subsequent nodes while the leaf node(s) (which have
no successors) must complete before the deadline.

3 YASMIN DESIGN & IMPLEMENTATION
We design YASMIN as a library to be compiled individually and
linked to the end-user program. YASMIN is highly modular and
allows (1) the use of various scheduling policies and, (2) easy switch-
ing between them at compile time using a configuration header
file.

We implement YASMIN in structured C-code following real-
time and MISRA-C 20121 coding guidelines to enable the use of
WCET analysis tools, such as AbsInt’s aiT [11] or Heptane [21]. We
systematically refrain from using dynamic memory allocation, and
loops are statically bounded. To accomplish this, we make use of
C-header configurations to define constants used throughout the
library, e.g. the number of threads or the number of tasks.

YASMIN is compatible with any POSIX-compliant OS. However,
we do rely on the pthread_set_affinity_np non-POSIX function that
binds a thread to a specific core. Similar requirements can be found
in previous work [26, 33].

3.1 YASMIN API
The library is configured at compile time using a configuration file.
In this file, pre-processor definitions set, among others, the type
of scheduling, the type of mapping and the priority assignment.
Each different scheduling strategy requires different mandatory
information to perform adequately, but we keep a uniform interface
for all scheduling configurations. The configuration is applied to
the whole compiled binary, only one scheduling policy is allowed
at a time. In order to switch to another policy, the application must
be recompiled with new parameters.

Table 1 presents the API of YASMIN. All functions are prefixed
with yas_. For conciseness we omit the prefix throughout the paper.
The API is common to all scheduling strategies. This allows for
easy switching at compile time without modifications of the user
code.

The end-user program must first call the init function that ini-
tialises different structures of our library. Then, the user must de-
clare the various tasks using task_decl and their associated versions
with version_decl.

YASMIN supports DAG-based tasks. We provide a mechanism
to declare and manage FIFO channels required between causally

1We checked for MISRA-C compliance using the trial version of PC Lint Plus [36]

Table 1: Full API of YASMIN

struct TData {
char *name,
u64 period,
u64 deadline,
u16 virt_core_id,
u64 release_offset}

Structure to describe a task.
Some fields are optional
depending on the configured
scheduling policy.

void init(void) Initialise YASMIN.

void cleanup(void) Wait for all worker threads
to finish and close.

bool start(void) Start to execute the tasks.

void stop(void)
Stop pushing new tasks into
the ready queue. All tasks already
pushed will be executed.

TID task_decl(
TData *d) Declare a task to the scheduler.

void task_activate(
TID t)

Activate a non-recurring task
for immediate schedule.

VID version_decl(
TID t,
FuncPtr f,
void *f_static_args,
VSelect props)

Add a version to the task
with user specific properties.

HID hwaccel_decl(
char *name) Declare a hardware accelerator

void hwaccel_use(
TID t,
VID v,
HID a)

Declare a hardware accelerator
used by a task version.

channel_decl(
CID,
datatype,
size)

Macro to declare a channel
of type 𝑡𝑦𝑝𝑒 identified by 𝐶𝐼𝐷
containing 𝑠𝑖𝑧𝑒 items
of type 𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒 .

channel_connect(
TID src,
TID dst,
CID)

Macro to connect a source
and a destination task
using the specified channel
identified by 𝐶𝐼𝐷 .

channel_push(
CID,
datatype d)

Macro to push a value of
type 𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒 in the FIFO
identified by 𝐶𝐼𝐷 .
To be used in user function body.

channel_pop(
CID,
datatype *d)

Macro to pop a value of
type 𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒 in the FIFO
identified by 𝐶𝐼𝐷 .
To be used in user function body.

dependent tasks within a DAG. The pre-processor macro chan-
nel_decl defines the FIFO channel buffer. Connecting two tasks to
use this channel is done with channel_connect. The channel can be
accessed from within user tasks with the channel_push and chan-
nel_pop functions to push data to and to pop data from a channel,
respectively.
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Hardware accelerators can be declared with hwaccel_decl and
linked to a task version with hwaccel_use. Our scheduler is, there-
fore, aware of accelerator usage and can apply smart strategies to
select a specific version at runtime according to selected criteria,
see Section 3.2 for more details.

At this stage no user code has yet been executed, and no schedul-
ing has been performed. It is only after the call to the start function
that the scheduler starts to run the application. Calling the stop func-
tion stops the scheduler. Then, either the main program performs
the finalisation of the application with cleanup, or the schedule can
be resumed with a new call to start. It is only possible to alter the
task set while the schedule is not running, hence enabling multi-
mode scheduling [15]. For conciseness we omit all functions to alter
the task set in the following API tables.

3.2 Heterogeneity & Multi-Version
With embedded platforms hardware accelerators are usually a
scarce resource: today’s system typically come with no more than
a single GPU. If multiple tasks need to access an accelerator then
they might need to wait for the resource to become available. To
avoid this form of congestion we introduce multi-version tasks. A
task may have one implementation targeting the GPU, another one
using some other accelerator and yet another one targeting the
CPU. Since accelerator usage is declared to our scheduler using the
API call hwaccel_use, it can detect that the targeted accelerator is
busy and that it might be preferable to use a different task version
targeting a readily available execution unit type.

Should our scheduler not be able to determine amatching version
where all hardware resources are available, and if the current task
has a higher priority than the one currently using the targeted
resource, we apply a Priority Inheritance Protocol (PIP) [29] and
reschedule the task.

Going further with versions, we provide multiple configuration
options to automatically select the version for the current job. At
the time of writing it is possible to configure the version selection
depending on (1) the current energy capacity (battery status) of the
platform, (2) depending on an energy/time trade-off, (3) depending
on the current execution mode2, (4) depending on a bit mask per-
mission, or (5) with a call to a user-defined function. The method
to use is specified in the configuration header file, thus, only one
method is effectively used at runtime, but switching is possible at
compile time.

Each of these selection options requires different information
from the user. This information is provided when declaring a ver-
sion using version_decl through the VSelect props argument. The
type of this argument is a structure morphed to cope with the se-
lected method. For example, if the method to select the version
is based on energy then the structure includes two fields to pro-
vide the energy budget of the task, and a user function to request
the platform-dependent battery status. We provide an example in
Section 3.6.

Limitation: Practically, task versions targeting a specific hard-
ware accelerator start on a CPU core before they move the main

2For example, multi-security mode where different implementations of an encryption
algorithm can be switched at runtime by changing the mode of execution.

workload to the accelerator, and eventually complete their exe-
cution back on a CPU core. For the time being, we consider the
accelerator to be busy from the beginning of the initial CPU part to
the end of the final CPU part. In the near future we plan to add an
asynchronous mechanism, where CPU cores can be used by tasks
while the accelerator-bound task actually runs on the accelerator.
For initial work in this direction we refer the interested reader
to [31].

3.3 Partitioned & Global On-line Scheduling
We rely on the concept of shielded processors, as described in [6, 33].
The idea is to reserve cores to only execute real-time (RT) tasks in
order to minimise interference with system tasks. On each of the
reserved cores we spawn one thread, called worker thread or virtual
CPU. This thread serves as a container for the execution of the user
real-time tasks.

An on-line scheduler must activate tasks following their arrival
time (period), decide which version of the task to execute and
dispatch tasks to a worker thread. YASMIN supports two modes:
(1) global: all tasks can be executed on any virtual CPU; (2) parti-
tioned: all tasks have a predefined target virtual CPU. The selection
between the two modes is done at compile time through the config-
uration header file. Hence, only one of the two options is effectively
compiled into the resulting binary. Switching between global and
partitioned scheduling requires the modification of a single macro
definition and a recompilation.

YASMIN supports static and dynamic priority assignments fol-
lowing task periods (rate monotonic), deadlines (deadline mono-
tonic, earliest deadline first) or any statically user-defined priorities.

Specifically with DAG-based tasks, only the source nodes need
to have a period attached. Intermediate and sink nodes are auto-
matically activated by the scheduler once all required incoming
data are present in their input channels.

Figures 1a and 1b illustrate our overall architecture for global and
partitioned scheduling strategies, respectively. In both modes each
worker thread is pinned to a specific core. With global scheduling
all worker threads share a common ready queue, whereas with
partitioned scheduling each worker thread has its own ready queue.

In either case, global or partitioned, the ready queue is filled by
a separate scheduler thread that is likewise pinned to its private
core. Unlike Saranya and Hansdah [33], who also use an external
scheduler thread, we do not constantly check for new tasks to acti-
vate. Instead, we only periodically check for new tasks to schedule,
i.e. between two activations the scheduler thread waits. The period
of the scheduler thread is determined using the greatest common
divisor of all declared task periods.

Using a separate scheduler thread that executes on its private
core decreases parallelism: one core less is available to execute user
RT tasks, but it increases predictability by minimising interference.
For example with Linux, a core-pinned scheduler task of the kernel
periodically preempts the running thread to check for higher prior-
ity tasks to execute. To meet real-time requirements this blocking
mechanism must be accounted for in the worst-case response time
of user RT tasks. In practice, however, it is very difficult to estimate
this blocking time spent in the kernel scheduler. Using a separate
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(a) Global on-line scheduling strategy. The ready task
queue is shared among worker thread.
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(b) Partitioned on-line scheduling strategy. A scheduler
thread pinned to another core feeds each worker thread
ready task queue.
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(c) On-line dispatcher with an off-line scheduling strategy.
Each worker thread is pinned to a core, and a scheduling
loop iterates on its ready task queue.

Figure 1: Illustration of the three scheduling classes sup-
ported by YASMIN: (a) global online scheduling, (b) parti-
tioned online scheduling and (c) online dispatch with an
offline schedule.

scheduler thread to check for higher priority tasks avoids such
blocking and still allows preemption.

In addition, it is possible to configure the Linux kernel to prevent
the aforementioned periodic scheduler task: a value of −1 needs to
be written in the virtual file /proc/sys/kernel/sched_rt_runtime_us.
We refer readers interested in how to increase user control over
time in Linux to [32].

Limitation: We do not support job migration. A job (task in-
stance) spawned on a virtual CPU cannot be migrated to another
one. However, we do support task migration: job 𝑖 of some task may
run on one virtual CPU while job 𝑖 + 1 runs on a different virtual
CPU.

3.4 Off-line Scheduling
Unlike any similar middleware we found in literature, YASMIN
natively supports offline computed schedules. An off-line schedule
is computed before executing the application using the timing
properties of the task set. In our runtime implementation an online
dispatcher dispatches tasks at the predefined time following a given
time table and a given mapping.

Figure 1c presents the overall architecture for the off-line sched-
uling strategy. Each worker thread is pinned to a specific core and
has access to a predefined sequence of RT tasks ordered by in-
creasing release times. Upon creation each worker thread starts
executing a control loop running the RT task in order. To respect
the release time of each task (computed off-line), special delay slots
are added in between RT tasks that make the worker threads wait
for a pre-determined duration.

If the static scheduler is aware of multi-version tasks, the version
can be pre-selected off-line. This has the advantage of reducing the
size of the resulting binary as it only needs to embed the actually
required task versions instead of all task versions available to be
potentially selected at runtime.

Limitation: We consider heterogeneous resource management
to be handled by the off-line scheduling step. A task can, hence,
target an accelerator without requesting access to the on-line dis-
patcher.

3.5 Further Implementation Aspects
This section describes other design issues we encountered and how
we addressed them in YASMIN.

Accessing time: We access time using the POSIX primitive
clock_gettime where the given clock can be set using the configura-
tion file. As default, we employ CLOCK_MONOTONIC that gives a
monotonically increasing clock with nanoseconds precision. The
POSIX standard does not specify what the time 0 means. In Linux
time 0 corresponds to system boot time. Our library stores the time
at which the schedule is started using API call start. Afterwards, all
timing information is computed using this initial starting time.

Pre-emption: YASMIN supports pre-emption with on-line
scheduling policies only. Upon sorting, similar to [26], the sched-
uler thread sends a signal (PREEMPTION_SIGNAL), using the
pthread_kill POSIX primitive, to each worker thread executing
tasks with a lower priority than that of the head of the ready queue.
This signal is caught by the thread which looks in the ready queue
for a higher priority task. If a higher priority task is found, a context-
switch is operated. Upon completion, the process of finding a higher
priority task is repeated until the initial preempted task becomes
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the task with the highest priority task and the context is switched
back to it.

Context switching: Similar to [26] we use an architecture-
dependent swapcontext function (in assembly code), which is called
when switching execution context upon pre-emption. We draw
inspiration from the GLibC swapcontext implementation, but leave
out extra syscalls. As of writing, our swapcontext implementation
is available for ARM 32/64 bits as well as X86-64 architectures.

Locking: Internally we implement synchronisation primitives,
i.e. mutex locks and barriers, in two different manners: A first im-
plementation uses the POSIX API implemented in the kernel and
GLibC. A second implementation relies on lock-free algorithms
from [25]. Users choose among the two options at compile time
using the configuration file. We believe that lock-free algorithms
form a superior choice for static WCET analysis [25], but spinlocks
exhibit higher energy consumption. However, it is hard to analyse
kernel and GLibC calls, but this solution offers better energy perfor-
mance at the cost of predictability due to the kernel replacing the
worker thread by an internal idle task. Selecting one or the other
option depends on user preferences regarding predictability and
energy conservation.

Waiting: With similar consideration in mind we provide the
option to configure the waiting strategy in two ways: (1) sleep
(default): calls some kernel code, which is hardly timing-analysable,
(2) spinlock: enable a more precise overhead analysis at the cost of
potential energy waste.

Protecting against page fault: Similar to [26] we lock our
library code in memory using the POSIX primitive mlockall. This
prevents swapping out the code of our library.

Interrupts: We set the kernel to use threadirq, and we shield the
processor using isolcpu. Hardware interrupt handlers are composed
of two parts, a top and a bottom part. We cannot do much about the
top part that usually is pinned to a specific core. For the bottom part
if they are not pinned to a specific core then the same configuration
as for software interrupts applies. If they are specific to a core
and this core runs a worker thread or the scheduler thread then
their scheduling is left to the underlying OS. Care must therefore
be taken to ensure that the priority of our worker threads and/or
scheduler threads allows these bottom part interrupt handlers to
execute.

3.6 Example
The following two listings 1 and 2 show an example of four tasks.
The four tasks represent a fork-join graph where a fork is connected
to two other tasks before joining to a join task. Data are exchanged
using FIFO channels. The task left has two versions, one using a
specific hardware accelerator and the other running on a CPU core.
YASMIN is configured to select the version according to the current
energy capacity of the platform.

Listing 1: Essential configuration example, must be in a con-
fig.h file
1 #include "yasmin_constants.h"

2 /* there 1 periodic task: the fork task*/

3 #define PERIODIC_TASK_SIZE 1

4 /*all other tasks are activated depending on

the presence of input data*/

5 #define NONPERIODIC_TASK_SIZE 3

6 /*there are 4 FIFO channels connecting tasks*/

7 #define CHANNEL_SIZE 4

8 /*At most 2 versions are used*/

9 #define VERSION_MAX_SIZE 2

10 /*adapt the structure and code to select

versions of task based on remaining energy

.*/

11 #define VERSION_SELECTION ENERGY

12 /*One hardware accelerator is used*/

13 #define HWACCEL_SIZE 1

14 /*the example uses a global on-line scheduler

*/

15 #define MAPPING_SCHEME GLOBAL

16 /* priority are given using EDF*/

17 #define PRIORITY_ASSIGNMENT EDF

18 /*2 worker threads will be used*/

19 #define THREADS_SIZE 2

Listing 2: C code example using YASMIN common API with
user-defined priority
1 struct token { int value ; }

2 /* declare a dependency without data exchange */

3 channel_decl(fl, char , 0);

4 /* declare dependencies with data exchange */

5 channel_decl(fr, struct token , 1);

6 channel_decl(rj, int , 2);

7 channel_decl(lj, int , 1);

8
9 void fork(void *arg) {

10 struct token; token.value = 2;

11 channel_push(fr,token)

12 }

13 void right(void *arg) {

14 struct rec_token;

15 channel_pop(fr, &rec_token);

16 channel_push(rj, rec_token.value);

17 channel_push(rj, rec_token.value *2);

18 }

19 void join(void *arg) {

20 int rec_data;

21 channel_pop(rj, &rec_data);

22 channel_pop(rj, &rec_data);

23 channel_pop(lj, &rec_data);

24 }

25 void left_v1(void *arg) {

26 int *a = (int*) arg;

27 channel_push(l, *a);

28 }

29 void left_v2(void *unsued) {

30 int val = get_val_from_specific_accel ();

31 channel_push(l, val);

32 }

33 /*User defined function to get the battery

status */
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34 static void current_battery_level () { return

.... ; }

35 void main(int argc , char **argv) {

36 TData f, j, r, l; TID fid , jid , rid ,

lid;

37 VID lv1id , lv2id; HID aid;

38 /*Due to the given configuration , the

required information to select a version

is energy budget */

39 VSelect lv1_select , lv2_select;

40
41 init(); // initialise YASMIN

42
43 f.name = "fork"; f.period = 250;

44 // initialise other tasks

45 l.name = "left";

46 lv1_select.energy_budget = 5;

47 lv2_select.energy_budget = 12;

48 lv1_select.get_battery_status =

49 lv2_select.get_battery_status =

current_battery_level;

50
51 fid = task_decl (&f, fork , NULL);

52 // declare other tasks

53 lid = task_decl (&l);

54 lv1id = version_decl(lid , left_v1 ,

lv1_select);

55 lv2id = version_decl(lid , left_v2 ,

lv2_select);

56
57 aid = hwaccel_decl("

quantum_rand_num_generator");

58 hwaccel_use(lid , lv2id , aid);

59
60 channel_connect(fid , rid , fr);

61 channel_connect(rid , jid , rj);

62 // declare other channel connections

63
64 start (); // Start the schedule

65 //wait for some event

66 stop(); // Stop the schedule

67 cleanup (); // Cleanup before exiting

68 return 0;

69 }

4 EVALUATION
We empirically evaluate the overhead and latency introduced by
YASMIN against various state-of-the-art task management alter-
natives. We target the embedded heterogeneous COTS platform
Odroid-XU4 [20] as it provides multiple heterogeneous cores and
allows us to run a RTOS with the support of the PREEMPT_RT
patch set for Linux. The Odroid-XU4 platform includes an ARM
big.LITTLE octa-core CPU and a Mali GPU. The CPU is split into
two clusters: the LITTLE cluster contains four energy-efficient but
computationally less powerful ARM Cortex-A9 cores while the big
cluster embeds four computationally powerful but energy-greedier

ARM Cortex-A57 cores. We configure the OS following our guide-
line to tame Linux and minimise interference between OS and
application code [32]. All code is compiled with GCC 4.9 without
optimisation (−𝑂0), as is common to perform WCET analysis for
real-time systems [40].

4.1 Comparison with Mollison and Anderson
[26]

Mollison and Anderson [26] provide a library which performs a
global earliest deadline first (G-EDF) schedule on behalf of the OS.
The library spawns worker threads on cores similar to our approach,
but it does not reserve one core for a scheduling thread as we do.
Instead, they rely on a global queue, which is shared among all
worker threads, and on test-and-set primitives to ensure mutually
exclusive access to the global queue. The code provided by Mollison
and Anderson only includes an x86 version. Therefore, we adapt the
architecture-dependent part of the code to run this experiment on
our ARM-based platform. We also adapt their method to measure
time to match ours, thus ensuring a fair comparison.

Since Mollison’s and Anderson’s library targets homogeneous
multi-core architecture, we successively use two and three big cores
to execute user RT tasks. As YASMIN runs a separate scheduler
thread, we map this thread on the remaining big core.

We use the task set generator based on the Dirichlet-Rescale
(DRS) algorithm [18], which allows us to uniformly generate task
sets with varying utilisation. We vary the number of tasks in the
range [20; 120]. For each number of cores and for each number of
tasks we generate 5 task sets, with utilisation varying in the range
[0.2; 2]. This results in 1360 different task sets. The code related to
each task is the same one as in [26], which is a simple function that
iterates to reach a pre-defined WCET.

Figure 2 shows the evolution of the overhead depending on
the amount of tasks and the total utilisation. On average YASMIN
shows less overhead and better scalability in the number of tasks.
However, the worst-case overhead observed with our library is a
bit too high compared to the average, indicating one direction of
future work.

4.2 Latency estimation comparison
Cyclictest3 is a popular program used to accurately and repeatedly
measures the response latency of a sporadic task activation. This
program is available for Linux+PREEMPT_RT patch
Linux+SCHED_DEADLINE and LitmusˆRT. We adapt cyclictest to
run under YASMIN management.

On the Odroid-XU4 board we switch between the different ker-
nels, Linux+PREEMPT_RT patch and LitmusˆRT, to perform each
run of cyclictest. Unfortunately, we cannot include the
SCHED_DEADLINE scheduler class in our comparison as it is not
available for our platform, which further illustrates the motivation
for creating YASMIN. Similarly, LitmusˆRT offers several schedul-
ing policies. However, cyclictest fails to execute with some of them,
hence they are not included in this experiment.

We invoke cyclictest with the same condition:
-t 6 -d 0 -i 10000 -m -l 10000, i.e. we want 6 threads woken up 10000
times at the same time with a 10ms period and with locked memory.
3https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start
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(a) Average and maximum scheduling overhead by number of tasks
(b) Average and maximum schedul-
ing overhead by utilisation

Figure 2: Comparison of the overhead between YASMIN and [26]

We restrict ourselves to 6 threads as our middleware library needs
a 7𝑡ℎ thread for scheduling and we leave one core available to the
OS, again to improve predictability.

To generate interfering load on the platform we use the tool
stress-ng4, which we configure to stress the scheduler and the
computing cores. Stress-ng is invoked with the following param-
eters: -C 8 -c 8 -T 8 -y 8, which roughly means that 8 threads are
spawned per stressor, i.e. cache trashing, computation, timer events,
sched_yield calls. For more details see the stress-ng documentation.

Table 2 displays the latencies we observed in the different con-
figurations. The first column shows the kernel type and version
used to gather the measurements. The second column displays the
version of cyclictest used: YASMIN stands for our adapted version
using our library, RTapps stands for the common version shipped
with the PREEMPT_RT patch set and litmus+XX stands for the ver-
sion shipped by LitmusˆRT where 𝑋𝑋 is the OS set up scheduler.
The third column of Table 2 shows the minimum, maximum and
average latency observed across the 6 threads.

On the Linux kernel with PREEMPT_RT the observed latency
using YASMIN is similar to the initial cyclictest version, though
slightly higher, due to our library overhead. When running on
LitmusˆRT, we observe a higher overhead of our library compared
to other versions. However, the benefit of LitmusˆRT comes at the
price of no support for complex COTS heterogeneous platforms.

5 USE-CASE: UNMANNED AERIAL VEHICLE
An industrial partner provided us with a use-case involving an
unmanned aerial vehicle (UAV), or drone for short, performing
object detection on images. The goal of the use-case is to detect life
boats or similar objects on sea while autonomously patrolling some
geographic area to call upon rescue services if needed. Combining
real-time requirements, rapid prototyping, scheduling exploration
and task implementation exploration are the leitmotiv brought
by our industrial use-case for the creation of our middleware. As
compared to previous approaches [26, 33], YASMIN enables various
scheduling policies, task models and platforms with a simple API.

4https://wiki.ubuntu.com/Kernel/Reference/stress-ng

Table 2: Latency comparison between YASMIN,
Linux+PREEMPT_RT and LitmusˆRT

OS Cyclictest Latency in 𝜇𝑠

version < 𝑚𝑖𝑛,𝑚𝑎𝑥, 𝑎𝑣𝑔 >

Linux
+PREEMPT_RT YASMIN 90, 1481, 500

4.14.134-rt63 RTapps 176, 1550, 463

LitmusˆRT
YASMIN 67, 318, 170
RTapps 33, 222, 74

4.9.30-litmus litmus+GSN-EDF 35, 247, 84
litmus+P-RES 988, 1206, 1027

The UAV under study is a fixed-wing drone. The application
scenario is a Search & Rescue (SAR) mission where the drone flies
above the sea and sends an alarm to a ground station when it
detects life boats. Figure 3 provides a graphical sketch of the system.
The drone embeds multiple computing platforms that can be split
into three parts: flight control, image capture and mission-specific
payload application.

Figure 3: Overview of the SAR UAV system including hard-
ware, operating environment and software
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Flight Control: To fly in total autonomy the drone uses a GPS-
based autopilot open-source software stack, called PX45, that pilots
the drone following a pre-loaded mission. It runs on a PixHawk 2
platform4 (single-core Cortex M4F with 256 KB RAM).

ImageCapture: To capture images an Elphel6 board with a cam-
era is mounted below the drone. The Elphel board runs GNU/Linux;
captured frames are streamed using standard GStreamer5 libraries.
The configured GStreamer pipeline streams out the image via a
HTTP server, which is accessible through an Ethernet port on the
Elphel board. The use of GStreamer to deliver images at a fixed
frame rate is a requirement for the implementation of the system.

Search & Rescue Payload Application: The SAR application
runs on a Toradex Apalis TK17 Computer-on-Module hardware
platform, which provides a quad-core ARM Cortex-A15 CPU, 2 GB
of DDR3 RAM, and 16 GB of non-volatile storage. It also features
an NVIDIA Kepler GPU with 192 cores. The GPU device can be
exploited to accelerate image processing tasks. The board runs
a modified Ubuntu/Linux6, which includes NVIDIA proprietary
drivers for the Kepler GPU. This precludes the use of both a Real-
Time Operating System (RTOS) and the RT-patch set for Linux as
neither of them supports this hardware platform.

The original SAR application code, as provided by our industrial
partner, has mostly been developed in C++, with an object detection
function written in CUDA. It receives Mavlink-encoded8 messages
from Flight Control through a serial port on the board. Among
others these messages provide time synchronisation, update GPS
coordinates, and enable/disable the payload application. The latter
feature allows us to save energy by not running the SAR application
while navigating to and from the mission area.

The SAR application also receives frames from Image Capture
through its ethernet port. Upon reception of a toggle image capture
message from Flight Control, a GStreamer pipeline is activated. It
downloads a new frame at a fixed frame rate. This frame is stored
in a queue until it is processed by the detection algorithm, which
is likewise activated/deactivated by the same message. Due to the
low speed of the drone there is no need for a high frame rate. The
frame rate is set at 2 frames per second (fps). Upon detecting life
boats a message is sent to Ground Control, including the number
of boats, their corresponding GPS location and the image itself for
manual validation.

Figure 4 shows a simplified view of the tasks within the SAR.
There are two independent tasks, where one is a DAG with multiple
nodes. The periodicity of each root node is presented in the figure
along with their WCET. Furthermore, four tasks have multiple ver-
sions: Tasks Detect objects, Highlight objects and Estimate speed deal
with images with either a CUDA-based accelerator implementation
or a CPU-only implementation. The task Encode has two versions
(or implementation variants) to either not encode the data (Plain)
or use the AES algorithm for encryption (AES). The latter further
allows two modes of execution: a normal mode and a secure mode.
The secure mode is activated when boats are detected in the frame.

We crafted a simple mission to simulate an environment for the
search-and-rescue application which we compile and link with our

5https://px4.io/ – https://pixhawk.org/
6https://www.elphel.com/ – https://gstreamer.freedesktop.org/
7https://developer.toradex.com/products/apalis-tk1 – https://ubuntu.com/
8https://mavlink.io/en/
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Figure 4: Simplified view of the SAR application tasks

YASMIN middleware. Figure 5 shows the results of a wide range
of experiments. In blue and using the left y-axis we show the min-
imum, average and maximum time observed to process a single
frame. Remember that the search-and-rescue application demands
a frame rate of 2 frames per second, which translates to a deadline
of 500 ms. In red and using the right y-axis we show the deadline
miss ratio: red crosses indicate the percentage of invocations that
violate the 500 ms deadline. On the x-axis we play with a number
of configurations. Firstly, we make use of four different scheduling
policies from the YASMIN portfolio: global earliest deadline first
(G-EDF), global fixed priority with deadline-monotonic priority
assignments (G-DM), partitioned earliest deadline first (P-EDF) and
partitioned fixed priority with deadline-monotonic priority assign-
ments (P-DM). Next, we run each of the four scheduling policies
with and without preemption. Finally, we run each of the above
eight scheduling techniques with one of three possible configura-
tions: force the scheduler to only use CPU versions of tasks, force
the scheduler to only use GPU versions or permit the scheduler to
choose between both alternatives for best performance.

As to be expected, the average time to process a frame is longer
for CPU-only configurations, where we observe considerable num-
bers of deadline misses. The GPU-only configurations perform on
average significantly better than the CPU-only configurations, but
nonetheless exhibit deadline misses. The deadline miss ratio is even
similar to the CPU-only configurations due to deadline misses of
the stand-alone flight control message handler task. The only con-
figurations that consistently avoid deadline misses are the ones
employing both CPU and GPU versions with automatic selection
by the scheduler in YASMIN.

To summarise, all scheduling strategies (G-EDF, G-DM, P-EDF,
P-DM) exhibit similar overhead and deadline miss ratios. Looking at
the exact numbers, the partitioned strategies suffer from a slightly
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Figure 5: Scheduling exploration for the drone use-case

higher processing time per frame (6ms for the maximum values).
This is due to the loss of the flexibility of partitioned scheduling
versus global scheduling. This leads to a single deadline miss for
P-EDF-both and P-DM-both for the flight control message handler
task.

Our search-and-rescue unmanned aerial vehicle illustrates vari-
ous benefits of our proposed YASMIN middleware:

• We can easily play with a variety of scheduling policies
and priority assignment strategies to perform a systematic
design space exploration to determine which strategy yields
the best performance.

• YASMIN enables us to have multiple versions of tasks with
different properties, e.g. running on the CPU or running
on the GPU, and to select the best option dynamically at
runtime. In our experiments this was the only option that
produced zero deadline misses.

• YASMIN is portable and can run on top of any POSIX-compliant
operating system.

• YASMIN can easily be extended by additional scheduling
policies, etc, as it runs entirely in user space.

YASMIN can be used in two different ways: for manual sys-
tems engineering or as a compilation target from some higher level
specification. As pointed out in the introduction, compiler-based
synthesis is our goal in the overarching context. Either case grossly
benefits from the ability to fundamentally manipulate the inter-
nal organisation of an application, independent of the application-
specific code, by merely applying minor changes to some API calls.
This way YASMIN enables systematic design space exploration
across a range of scheduling policies and application configurations
with minor effort in programming or compiler backend engineering.

6 RELATEDWORK
Various forms of real-time operating systems (RTOS) [1, 7, 16],
kernel patches [5] or hypervisors [24] have been proposed to control
resources in the presence of real-time requirements. These solutions
are known to enhance real-time scheduling capabilities, but they are
to different degrees neither as portable nor as easy to maintain nor
as customisable as a user-space library or middleware as YASMIN.

They also hardly support heterogeneous platforms and are mostly
limited to micro-controllers.

Mollison and Anderson [26] created a library to schedule a set
of tasks in user space. Their library is intended to be used on top
of a RTOS (Linux + PREEMPT_RT in their experiments). Target
applications include sporadic task sets scheduled on multiple cores
grouped in clusters (C-EDF). Their scheduling strategy supports
dynamic priority (EDF), preemption and migration. Among sched-
uling capabilities and other issues, the library provides locking
mechanisms with priority inversion (short wait time: spin-lock,
long wait time: context switch), synchronisation protocols for criti-
cal sections as well as long system call handling mechanisms that
avoid blocking the entire system. The authors also provide an em-
pirical evaluation of the overhead induced by the library based on
measurements.

Similar to Mollison and Anderson we abstract the scheduling
capabilities of the kernel within worker threads, or virtual proces-
sors, each mapped (and pinned) to a specific core. These worker
threads are responsible for the execution of the real-time user tasks
and guarantee timing constraints. Unlike Mollison and Anderson,
we do not allow job migration which makes our library simpler
and more efficient at the expense of specific scheduling strategies.
We advocate the reservation of a specific core for all non-RT tasks
(mostly system tasks) and interrupt handlers, which allows us to
provide the same guarantees in a simpler way using a COTS OS
instead of a fully-fledged RTOS. Lastly, the implementation pro-
vided by Mollison and Anderson makes extensive use of dynamic
memory allocation. This incurs well-known hazards for estimating
the WCET of the library, thus losing confidence in the reported
overhead.

ExSched [3] is a framework to allow scheduling from user space.
It is composed of two parts: (1) a user space library providing a
minimal API to an application program to set parameters and to
control the beginning and end of a schedule; (2) a kernel space
module which acts as a proxy between user-space API calls and
kernel scheduling primitives. While the authors claim their method
to be OS independent, the ExSched library requires a Linux kernel
module to be loaded. This strongly links their user space API to
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the Linux kernel. However, nlike YASMIN, they do allow preemp-
tion and migration. An extension of ExSched to mixed-criticality
workloads has been proposed in [19].

The ShedISA framework is introduced in [33] to enforce real-
time constraints on COTS platforms. This framework comes as
an extension of the Linux kernel by providing a new scheduling
class called SCHED_IS. SCHED_IS extends SCHED_DEADLINE but
comes with a higher priority within the kernel. It heavily uses
processor shielding by splitting cores into three groups: Linux cores
to execute system tasks, Service cores to execute the scheduler and
RT cores to execute SchedISA RT tasks. They only support the
P-EDF scheduling algorithm, but an extensive study of all induced
overhead is presented.

SF3P (Scheduling Framework For Fast Prototyping) [14] is a
framework to explore the design of a hierarchical composition of
real-time schedulers. This type of scheduler can be represented as
a tree of schedulers where the next task to schedule is decided by
going from the root of the tree to a leaf. Walking through the tree
following each stage scheduler decisions at the end will effectively
schedule a workload on a core. The framework allows to quickly
build this scheduler tree in order to test its viability. However, the
proposed framework is not meant for deployment and does not
provide any timing guarantees as its purpose is for design space
exploration only.

Serra et al. [34] propose a complete middleware framework to
enhance user experience regarding scheduling strategies from the
Linux user space. From the user point of view, it facilitates the setup
of existing scheduling strategies by hiding required invocations to
syscalls (pthread_* API) that configure the environment. The frame-
work is composed of a set of plugins, dynamically linked library, a
daemon running in privileged mode (root) and a user library linked
to the final application. Each plugin corresponds to a specific sched-
uling policy that will interact with the kernel using the currently
available kernel API. These plugins are loaded by the daemon to ap-
ply the user configuration on threads in order to achieve the desired
schedule. While the overall structure of the framework is kernel
version independent, the related plugins are not, which makes retro-
compatibility and future maintenance complicated. Each task is
considered to be one thread which is not feasible for very large
systems. Only task addition overhead is presented, leaving other
overheads unknown. For example, interference with the daemon
thread immediately comes to mind.

Similarly, Chishiro [9] proposes a middleware that sets the pri-
ority of threads in user space to influence the scheduling deci-
sions made by the kernel. This middleware, called RT-Seed, targets
real-time trading systems with a parallel-extended imprecise com-
putation task model executing a partitioned semi-fixed priority
scheduling algorithm. The type of targeted systems is limited to ho-
mogeneous processors, and the task model is generally unsuitable
for embedded systems with real-time requirements.

Singhal et al. [35] propose to add a module to the kernel to add
a scheduling level. This module will receive tasks (here tasks are
processes) from the user-space and performs a schedulability test
which, upon success, will compute the scheduling parameters. The
upper scheduling level offered by the system will then schedule
the processes according to their parameters. In order to achieve the
desired scheduling policy, the module keeps track on which tasks

have been addedwithwhich parameters to update them if necessary.
A module is quite dependent of the current kernel version, at least
to the major revision. No overhead analysis is presented in the
paper, however.

Slite [12] supports control of the scheduling of an entire system
at user level. It augments the Composite OS [28] with a direct
mapping between kernel and user threads. Both levels exchange
messages to maintain the coherence of active threads. This allows to
account for interrupt threads placed by the kernel in the scheduling
policy. They support partitioned (non-)preemptive fixed priorities
and EDF where each core has it own scheduling thread.

Finally, Bristot de Oliveira et al. [10] show how to account for
scheduling overhead within the Linux kernel. This helps in identi-
fying where overhead occurs within schedule deployment.

There are some major differences between our work and the
various frameworks and libraries mentioned before. Their common
focus is on online scheduling strategies, whereas we additionally
support pre-computed off-line schedules. On the task model they
merely support independent tasks, whereas we work with DAG-
based task models with dependencies. We are not aware of any
previous work putting heterogeneous architectures into the focus.
Neither are we aware of any previous work supporting multiple
versions of tasks with automatic runtime selection.

7 CONCLUSIONS
We have presented YASMIN, a real-time middleware that performs
the scheduling of an end-user application on behalf of the OS in
user space. YASMIN significantly simplifies design space explo-
ration with respect to scheduling and mapping by disentangling
scheduling and mapping decisions from functional application code.

YASMIN is, to the best of our knowledge, the first middleware
that embraces heterogeneity on embedded COTS platforms, among
others through support for multi-version tasks. The major features
of YASMIN include the possibility to easily switch between sched-
uling policies and to deploy applications using scheduling policies
that are not available at OS level. All this can be achieved without
the need to adapt the OS kernel or the end user application. We
show that the overhead and latency induced by YASMIN is similar
to existing state-of-the-art task management systems. We also show
the applicability and benefit of using YASMIN and multi-version
tasks on an industrial use case involving unmanned aerial vehicles
in a search & rescue application.

YASMIN is a corner stone in using COTS hardware and operating
systems for non-safety-critical real-time applications. This is crucial
for modern heterogeneous embedded platforms that typically come
with specific OS versions/patches or proprietary drivers that pre-
clude the effective use of specialised real-time OS support. YASMIN
provides best possible guarantees on timing behaviour entirely in
user space. The (non-trivial) taming of timing behaviour is hidden
within the YASMIN implementation and provided to users for free.
Still, we deliberately restrict ourselves to target non-safety-critical
real-time applications as only specialised hardware and operating
systems can provide formal timing guarantees.

As future work we plan to improve the management of real-time
tasks with arbitrary activation patterns by using recurring servers,
e.g. [13]. This would increase our support for real-time applications.
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We also plan to improve the support for heterogeneous platforms
by adding a mechanism to provide asynchronous usage of hardware
accelerators. Beyond GPGPUs we aim at supporting FPGAs, similar
to Gracioli et al. [17].
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