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ABSTRACT
Reducing the execution time of ORB-SLAM algorithm is a crucial
aspect of autonomous vehicles since it is computationally intensive
for embedded boards. We propose a parallel GPU-based implemen-
tation, able to run on embedded boards, of the Tracking part of the
ORB-SLAM2/3 algorithm. Our implementation is not simply a GPU
port of the tracking phase. Instead, we propose a novel method to ac-
celerate image Pyramid construction on GPUs. Comparison against
state-of-the-art CPU and GPU implementations, considering both
computational time and trajectory errors shows improvement on
execution time in well-known datasets, such as KITTI and EuRoC.

CCS CONCEPTS
• Computer systems organization → Single instruction, multiple
data; Embedded software; Robotics.
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1 INTRODUCTION
Autonomous vehicles, such as Unmanned Aerial Vehicles (UAVs)
and self-driving cars [9] must use sensors and algorithms to per-
ceive the external environment to localize themselves in the world.
The Simultaneous Localization and Mapping [25] (SLAM) algo-
rithm builds a map and localizes the vehicle using sensors such as
Lidar, Inertial Measurement Unit (IMU), GPS, and cameras. It maps
unknown environments and localizes the vehicle when it reaches
an already visited location. The ORB-SLAM [14] system exploits
camera sensors, that have been thoroughly investigated due to
their low price, small size, and easy setup [24]. Cameras are used to
extract points as features across subsequently captured images, to
then identify elements in the surrounding environment Moreover,
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by using stereo cameras, hence processing two concurrent images
at a time, the system is able to retrieve additional information
such as depth. SLAM-based systems are characterized by stringent
real-time constraints as localization information must be collected
before they become obsolete. Such real-time requirements can be
achieved through powerful multicore CPUs, by exploiting compute
accelerators, and/or by fine-tuning the algorithm parameters and
implementation details. Trivially, these aspects play an important
role in ORB-SLAM based approaches. That is why many versions
of ORB-SLAM that exploit accelerators have been proposed in the
literature, such as [8] and [12]. Our focus is on the Tracking phase
of ORB-SLAM, as this is where most efforts from the previous
work have been focused. We propose a novel and highly optimized
GPU based implementation of ORB-SLAM that exploits streams to
execute concurrent tasks. Moreover, we propose a novel parallel
implementation for Pyramid construction. Lastly, we compare our
implementations with respect to other state of art methods and we
release publicly the source code of our implementation.

2 BACKGROUND AND RELATEDWORK
GPUs were initially designed with the goal of accelerating graphic
workloads. However, they can be exploited for general purpose com-
puting (GPGPU). A GPU is a SIMD processor (Single Instruction
Multiple Data) able to process large amounts of data in a parallel
fashion. Since the GPU has its private memory space, it is necessary
to copy data to this memory in order to perform the computation
(called kernel) In order to assist the programmer in exploiting the
GPU capabilities, NVIDIA released a proprietary programming
model called CUDA (Compute Unified Device Architecture). CUDA
enables to dispatch kernels through a launch configuration, i.e. a
grid specified by the programmer in which parallel GPU threads
are logically organized [4] in blocks of threads. Moreover, it allows
the programmer to express an added layer of parallelism through
CUDA Streams and Events. Commands (compute kernel invocations
and memory movements) among different Streams are able to ex-
ecute concurrently[16] and can synchronize the execution using
Events. ORB-SLAM can be categorized in the Visual SLAM category
of SLAM systems, in particular in the features based approaches
since it uses the image features to estimate the system pose. Other
approaches are Direct methods that use the image’s pixel without
extracting features [6, 27] and keyframe based methods that select
only a few keyframe to reconstruct the map [11, 22]. ORB-SLAM
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systems have evolved over years. The first version [14] introduces
the use of ORB descriptor [20] as features; in ORB-SLAM2 [15],
the authors introduce the use of RGB-D cameras; finally in ORB-
SLAM3 [3]. ORB-SLAM features a considerable computational time
so someworks tried to reduce this by exploiting accelerators. In [10],
a variety of acceleration methods for ORB-SLAM or more generic
Visual Odometry, are compared; in [13], the authors accelerated the
method using OpenCL for FPGA and NVIDIA platforms; in [1, 12],
CUDA is exploited to accelerate ORB-SLAM2 on NVIDIA platforms
using CUDA and OpenCV1 to extract and match features in Stereo
camera systems. Moreover, in [1], the authors use OpenVX to of-
fload computation to GPU. In [8], the authors partially implemented
the features extraction phase using CUDA and use OpenCV to per-
form the image scaling. Our proposal improves the parallelism and
concurrency design of ORB-SLAM2 and ORB-SLAM3 algorithms.
In particular, with respect to the previous works, we propose a
different image scaling approach, we maximize the GPU utilization
using Streams and custom kernels, and we reduce the data copies
between CPU and GPU.

3 ORB-SLAM OVERVIEW
The interested reader can find the various ORB-SLAMphases in [14].
We focus on the optimization of Tracking part, in particular ORB
Extraction phase (Figure 1a), which is composed of six steps: Pyra-
mid, FAST, Distribute Octree, Orientation, Gaussian Blur and ORB
Descriptor. The Pyramid construction produces, from an input im-
age, several versions of that image at different levels of scaling [23].
Originally, the input image was sequentially scaled: each level is
constructed using the precedent one. Then, the FAST algorithm [19]
detects corners within the image pixels. A corner is a pixel that dis-
plays a significantly different luminance value compared to its
neighboring pixels. Since the number of points computed by FAST
can be huge, the Octree Distribution [17] algorithm is performed
as a point filter. It preserves isolated points and prunes less signifi-
cant ones in the dense areas of the image. In other words, the filter
attempts to prune as many points as possible, while still guaran-
teeing the minimum points required by the system. Then, for each
point, the orientation is computed using the intensity centroid [18].
Finally, all images are blurred and the ORB Descriptor (ORB-D) is
computed for each point. ORB-D is based on BRIEF descriptors [2]
that have the limitation of not considering point orientation so they
will fail to recognize the same point across two or more frames. The
authors in [20] introduced a correction to consider the previously
computed orientation.

4 OUR NOVEL IMPLEMENTATION
We provide a novel GPU-based implementation of the ORB Extrac-
tion phase (see Figure 1b) of the ORB-SLAM pipeline in order to
achieve improved performance with regard to its computational
time. More specifically, we use three Streams to execute concur-
rently three independent flows: (1) one to compute the blurred
images; (2) one to execute Pyramid and related CPU/GPU memory
transfers; (3) one to execute the feature extraction algorithms and
final memory transfer; we wrote kernels for the Pyramid, Gaussian
Blur, FAST, Orientation, and ORB Descriptors; and we reduce the
1https://opencv.org

(a) Sequential Flow (b) Concurrent Flow

Figure 1: ORB Extraction flows

memories copies between CPU and GPU. The Distribute Octree
phase is not suitable for GPU implementation. Gaussian Blur and
FAST tasks can be parallelized mapping one thread for each image’s
pixel since the computation of a pixel is independent of others.
Orientation and ORB Descriptor task are computed over the points
extracted by FAST and each point is independent of others so they
can be computed in a parallel manner. Differently from the baseline
image pyramid construction, our kernel simultaneously computes
each level starting from the original image. Each pixel of each level
is assigned to a CUDA GPU thread. Each thread computes its pixel
value starting from the original image, so to remove dependencies
among the pyramid levels and to have a result qualitatively equal
to the baseline. Considering the scaling factor 𝑓 of the current
level, the reference pixel coordinates from the original image are
computed as in eq. (1).

𝑥𝑢𝑝 = ⌈𝑥 ∗ 𝑓 ⌉, 𝑥𝑙𝑜𝑤 = ⌊𝑥 ∗ 𝑓 ⌋ 𝑦𝑢𝑝 = ⌈𝑦 ∗ 𝑓 ⌉, 𝑦𝑙𝑜𝑤 = ⌊𝑦 ∗ 𝑓 ⌋ (1)

Using the reference pixels, the new pixel value is computed by
applying the Bilinear Interpolation [21]. Ultimately, the difference
between the traditional method of Pyramid construction and our
approach lies in the selection of reference pixels.

To reduce the amount of memory copies between CPU and GPU
the Distribute Octree phase is moved after the ORB-D phase, this
allows having only one memory copy after ORB-D instead of two
(one after FAST and one before Orientation since Distribute Octree
runs on CPU and other phases on GPU. This means that Orientation
and ORB-D phases must process more points but the effort is less
than having more memory copies [5].

5 EXPERIMENTS AND RESULTS
We performed experiments on the Nvidia Xavier AGX board (512
NVIDIA cores, 8 cores ARMCPU, 32GB RAM).We compared our im-
plementation with the open source implementations of the original
ORB-SLAM2 [15]2, ORB-GPU [8]3, and ORB-dataflow [1]4. While

2https://github.com/raulmur/ORB_SLAM2
3https://github.com/yunchih/ORB-SLAM2-GPU2016-final
4https://github.com/xaldyz/dataflow-orbslam
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Table 1: ORB-SLAM2 results for KITTI dataset
Stereo Monocular

ORB-SLAM2 ORB-GPU Our ORB-SLAM2 ORB-GPU ORB-dataflow Our

KITTI04

ATE(m) 0.805 0.435 0.571 1.645 0.552 0.633 0.495
mean time(s) 113.471 76.560 67.189 49.039 20.568 31.556 17.870
min time(s) 101.737 68.430 58.278 42.156 14.983 33.752 11.935
max time(s) 178.186 110.765 137.335 145.387 141.620 44.609 131.922

KITTI06

ATE(m) 2.688 1.440 1.391 13.443 16.172 16.229 22.953
mean time(s) 92.102 81.771 72.370 49.719 23.369 70.273 17.979
min time(s) 73.580 65.330 53.982 40.599 15.053 12.405 10.601
max time(s) 391.772 341.873 453.502 207.565 214.655 194.517 235.658

KITTI07

ATE(m) 0.871 0.805 1.380 4.299 4.260 4.438 4.768
mean time(s) 87.546 79.150 70.828 50.077 21.559 67.521 17.887
min time(s) 72.527 67.656 57.499 39.392 14.271 12.372 12.447
max time(s) 238.742 360.060 424.848 260.271 240.451 276.189 229.278

Table 2: ORB-SLAM3 results for EuRoC dataset
Stereo Monocular

ATE(m) mean time(s) min time(s) max time(s) ATE(m) mean time(s) min time(s) max time(s)
ORB-SLAM3 [3] 0.037 57.068 44.941 62.634 3.059 29.555 19.388 118.630
Our 0.064 33.021 21.843 65.219 1.101 19.095 11.720 441.696

ORB-SLAM2 is fully implemented on the CPU, ORB-GPU and ORB-
dataflow, derived from it, exploit the GPU acceleration. We used
sequences 04, 06, and 07 from the Kitti dataset [7] as test scenarios
(image size: 1226x370px). The first sequence mostly has straight
trajectories, the second features a large number of close turns, and
the last represents an urban scenario. For all these scenarios, we
measured the computational time needed by the Tracking phase to
process a single frame in the Monocular and Stereo versions. We
also measured the Absolute Trajectory Errors (ATE) using the tool
released in [26]. We also tested our implementations using the ORB-
SLAM3 [3]5 as a code base, and compared it against the original
version of ORB-SLAM3 that runs on CPU. In this case, we used
the first sequence of the EuRoC Dataset (image size: 752x480px),
which is a scenario designed for autonomous drones. In this case,
we used the tool released with the code of ORB-SLAM3 to measure
the ATE. Table 1 reports the results for ORB-SLAM2 on the KITTI
dataset in the Monocular and Stereo versions. ORB-dataflow does
not support Stereo mode so we have not reported it. We can see that
our implementation presents the best mean time in all situations.
Considering the mean time in the Stereo mode, with respect to the
ORB-SLAM2 original implementation, our implementation has a
speedup of 1.7x, 1.28x, and 1.24x in KITTI04, KITTI06, and KITTI07,
respectively. In the Monocular case, for the same sequences, the
speedup is 2.74x, 2.77x, and 2.80x. Regarding tracking errors, for
the Monocular version, our implementation shows the best results
for sequence 04 and in sequence 07 the error is comparable with
respect to the other implementations. In sequence 06, larger error
highlights the difficulty in tracking on turns. This error is mitigated
in the Stero version in which our implementation is competitive
in all sequences. Table 2 reports the results errors for the Monoc-
ular and Stereo versions for ORB-SLAM3 on the EuRoC dataset.
The speedup of our implementations with respect to the original
ORB-SLAM3 is 1.55x (Monocular) and 1.73x (Stereo). In terms of
trajectory errors, our implementation shows the best results in
5https://github.com/UZ-SLAMLab/ORB_SLAM3

Monocular case and comparable in the Stereo case. To conclude,
our implementation shows a better execution time in all situations
reducing the percentage of ORB extraction phase over the entire
Tracking part from 45% to 29%. The difference in trajectory error
can lead to the different Pyramid construction since it produces less
blurred images but this difference is mitigated in the Stereo version.

6 CONCLUSION
We proposed a new GPU-based implementation for the ORB ex-
traction part of the ORB-SLAM Tracking phase we release it6. The
presented evolution includes a new Pyramid construction algo-
rithm; an optimal use of CUDA Streams that minimizes memory
copies. We compared our implementations with SotA versions ORB-
SLAM2/3, and a GPU-enabled ORB-SLAM2 version demonstrating
that it outperforms the others in terms of computational time with-
out significant precision deterioration. In future research, we plan
to replace the Distribute Octree phase with an algorithm suitable
for GPU implementation.
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