
THÈSE DE DOCTORAT DE

L’UNIVERSITE DE RENNES 1
COMUE UNIVERSITE BRETAGNE LOIRE

Ecole Doctorale N°601
Mathématique et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

« Benjamin ROUXEL »
« Minimising communication costs impact when scheduling

real-time applications on multi-core architectures »

Thèse présentée et soutenue à RENNES , le 19 Décembre 2018
Unité de recherche : Irisa – UMR6074

Rapporteurs avant soutenance :
Claire Pagetti Ingénieur de recherche ONERA, Toulouse
Matthieu Moy Maître de conférences Université de Lyon

Composition du jury :

Président : Daniel Chillet Professeur ENSSAT Lannion – Université Rennes 1
Examinateurs : Joël Goossens Professeur Université Libre de Bruxelles

Frédéric Pétrot Professeur ENSIMAG, Grenoble

Dir. de thèse : Isabelle Puaut Professeur Université Rennes 1
Co-dir. de thèse : Steven Derrien Professeur Université Rennes 1

Il vaut mieux se tromper en allant de l’avant que d’avoir raison en reculant.
par Frédéric Dard

TABLE OF CONTENTS

Résumé de thèse 7

Introduction 11

1 Hard real-time systems and multi-core platforms 17
1.1 Task models and their expressiveness . 18
1.2 Predictable multi-core architectures . 21
1.3 Towards parallel and predictable execution models 24
1.4 Task and Inter-core communication . 26
1.5 Worst-case execution time estimation . 28
1.6 Real-time scheduling: a state of the art . 29

1.6.1 Classification of single-core schedulers 29
1.6.2 Multi-core partitioned scheduling . 30
1.6.3 Multi-core global scheduling . 31
1.6.4 Multi-core hybrid scheduling . 32
1.6.5 Shared resource management on single-core and multi-core architectures 32

1.7 Conclusion . 33

2 Generic static scheduling frameworks with worst-case contention 35
2.1 Basic predictable multi-core architectures . 36
2.2 Software Model . 38

2.2.1 Inter-core communication . 39
2.3 Scheduling framework . 39

2.3.1 Example . 40
2.3.2 Integer Linear Programming (ILP) formulation 41
2.3.3 Forward List Scheduling algorithm . 44

2.4 Experiments . 46
2.4.1 Scalability of the ILP formulation . 47
2.4.2 Quality of the heuristic compared to the ILP 48
2.4.3 Impact of Tslot on the schedule . 49

2.5 Conclusion . 50

3 Computing the precise contention to build contention-aware schedules 51
3.1 Motivating example . 52
3.2 Improving worst-case communication cost . 54
3.3 Resource-aware scheduling techniques . 56

3.3.1 Integer Linear Programming (ILP) formulation 56
3.3.2 Forward List Scheduling algorithm . 58

3.4 Experiments . 62
3.4.1 Quality of the heuristic compared to ILP 63

5

TABLE OF CONTENTS

3.4.2 Quality of the heuristic compared to worst-contention communications . . 64
3.4.3 Quality of the heuristic compared to contention-free communications . . . 64

3.5 Related work . 65
3.6 Conclusion . 66

4 Hiding communication latencies in contention-free schedules 69
4.1 Hardware support . 70
4.2 Software & execution model support . 71
4.3 Motivating example . 71
4.4 SPM allocation scheme . 74
4.5 Non-blocking contention-free scheduling techniques 75

4.5.1 Integer Linear Programming (ILP) formulation 75
4.5.2 Forward List Scheduling algorithm . 79

4.6 Experiments . 83
4.6.1 Quality of the heuristic compared to the ILP 83
4.6.2 Blocking vs non-blocking communications 84
4.6.3 Impact of fragmentation strategy . 86
4.6.4 Impact of topological sorting algorithm . 88

4.7 Related Work . 88
4.8 Conclusion . 90

Conclusion 91

Appendices 94
STR2RTS benchmark suite . 94

Bibliography 95

List of Figures 109

List of Algorithms 111

List of Publications 112

6

RÉSUMÉ DE THÈSE

L’année 1969 marqua le point culminant de la course à l’espace lorsque Neil Armstrong,
Buzz Aldrin et Michael Collins firent un grand pas pour l’humanité lorsqu’ils marchèrent sur
la Lune. Leur voyage commença avec le lancement de la fusée Saturn V qui est considéré
comme le premier système critique. Pour assurer son contrôle, cette fusée inclue un ordinateur
de guidage (Apollo Guidance Computer – AGC) qui exécute un système d’exploitation temps-
réel. Celui-ci permettait aux astronautes d’entrer des commandes simples afin de commander
la fusée. L’architecture matérielle inclue, entre autres, un processeur 16-bits simple-cœur of-
frant 64 Koctets de mémoire approximativement, et opère à une fréquence de 2,048 MHz 1.
Une comparaison naïve serait d’opposer ces caractéristiques techniques avec les téléphones
portables intelligents de notre époque. En effet, ceux-ci offrent une puissance de calcul mille
fois supérieure à celle qu’il a fallu pour envoyer des astronautes sur la Lune, et surtout pour
les récupérer en un seul morceau. Depuis lors, la demande de puissance de calcul n’a cessé
d’augmenter, amenant les fabricants de matériels a continuellement amélioré leurs proces-
sus de fabrication des puces informatiques. Les deux principales améliorations possibles ont
pendant longtemps été l’augmentation de la densité des transistors et l’augmentation de la fré-
quence d’horloge. Ces augmentations suivirent la loi de Moore [Sch97] jusqu’en 2004, où elles
atteignirent une limite technologique connue sous le nom du Mur de Puissance (Power Wall)
[Kur01].

Á cause du Mur de Puissance, l’augmentation de la densité et de la fréquence ne sont
donc plus possible avec la technologie actuelle. La solution trouvée par les constructeurs, afin
continuer d’augmenter la puissance de calcul des processeurs, est d’accroître le nombre de
cœurs à l’intérieur d’une même puce. Il est dorénavant très facile de trouver des processeurs
commerciaux grand public avec 4, 8 cœurs, ou même plus. Par exemple, les processeurs de
la marque Intel© séries Core™i[3-9] contiennent de 2 à 18 cœurs. Les systèmes critiques ne
peuvent échapper à l’évolution des processeurs, et, peu à peu, intègrent les processeurs multi-
/pluri-cœurs au sein de leur plateforme dans des domaines tel que l’automobile, l’aviation, ou
l’espace [BDN+16 ; HMC+16].

L’informatique temps-réel-dur portent sur les applications calculant non seulement le bon
résultat, mais, et encore plus important, qui le calculent dans le temps imparti. En plus des
contraintes imposées aux systèmes classiques (e.g. performance, énergie), les systèmes temps-
réels-dur ajoutent des contraintes temporelles (eg. temps de relâche, échéances, . . .) . De plus,
manquer une contrainte temporelle, dans un système temps-réel-dur, mène à un échec total
du système, ce qui peut avoir des conséquences désastreuses. Par exemple, dans le domaine
de l’aviation, un manquement d’échéance peut causer la perte de vies humaines ; dans le do-
maine de l’aéro-spatiale, des milliards de dollars peuvent être gâchés avec le satellite brûlant
inopinément dans l’atmosphère.

Concevoir un système temps-réel-dur nécessite des garanties strictes et plus d’attention
que pour tout autre système, en particulier en ce qui concerne les contraintes temporelles. Afin
d’obtenir les garanties les plus fortes, les performances pire cas sont calculées a priori avec,

1. https ://en.wikipedia.org/wiki/Apollo_Guidance_Computer

7

Résumé de thèse

entre autres, l’estimation statique du plus long temps d’exécution (Worst-Case Execution Time
– WCET) et de politiques d’ordonnancement statiques. Les plates-formes multi-cœurs sont une
solution très attrayante pour la mise en œuvre de systèmes temps-réel-dur. Lorsque ces pla-
teformes sont spécifiquement conçues dans un souci de prévisibilité, elles offrent à la fois de
bonnes performances et la possibilité de détermine des performances pire cas précises. De
plus, les applications parallèles permettent d’exploiter pleinement toutes les ressources dispo-
nibles au sein des architectures multi-cœurs. La meilleure représentation pour les applications
parallèles fournit explicitement à la fois les dépendances et les concurrences entre les tâches,
car ces informations sont obligatoires pour calculer de manière statique des performances pire
des cas précises. Avant d’exécuter une application sur une plateforme multi-cœur, une étape
obligatoire est de décider sur quel cœur et quand exécuter les tâches de l’application. Un ordon-
nanceur place les tâches sur les cœurs, et ordonnent leur exécution sur le cœur. Les décisions
de placement et d’ordonnancement ont un impact sur le temps d’exécution global de l’applica-
tion sur les processeurs multi-cœurs. Le point central de cette dissertation est la construction
d’une politique d’ordonnancement dont l’objectif est de minimiser la taille de l’ordonnancement.

Cette thèse présente deux méthodes d’ordonnancement statiques ayant pour but d’optimi-
ser les performances globales d’une application donnée tout en garantissant des contraintes
temporelles fortes. Elles peuvent être classées comme partitionnées statiques et non préemp-
tives. La mise en œuvre des stratégies d’ordonnancement proposées inclut à la fois une for-
mulation à base de programmation en nombre entier (Integer Linear Programming – ILP) et
un algorithme approximatif basé sur une heuristique gloutonne similaire à l’ordonnancement
par liste. Les formulations ILP fournissent une description non ambiguë du problème étudié,
et servent également de base pour évaluer la qualité de la proposition d’algorithme heuris-
tique. Les deux stratégies d’ordonnancement ciblent des plateformes multi-cœurs dans les-
quelles, les cœurs sont inter-connectés par un bus arbitrée avec une politique de tournoi à
la ronde juste (FAIR-Round-Robin). Chaque cœur est également supposé avoir accès à une
mémoire locale privée, ou mémoire bloc-notes (ScratchPad Memory – SPM). Dans cette dis-
sertation, les applications parallèles sont considérées représentées sous forme de graphiques
de tâches acycliques (Directed Acyclic Graphs – DAG). Afin de tirer parti au mieux d’architec-
tures à mémoire bloc-notes, le modèle d’exécution utilisé est Acquisition Exécution Restitution
(AER) [MNP+16]. Il force les accès mémoire à être isolés des phases de calcul. Cette sépara-
tion permet d’abord de lire les données d’entrée depuis la mémoire globale dans la SPM, puis
d’exécuter le code sans interférence avec les autres cœurs, et enfin d’écrire les données pro-
duites de la SPM vers la mémoire externe. Dans les approches défendues dans cette thèse, les
tâches de communication sont supposées ne transférer que des données via la mémoire prin-
cipale (les communications de SPM à SPM ne sont pas autorisées). Dans un premier temps,
les communications sont limitées à un mode bloquant, Chapitres 2 et 3, puis le mode non blo-
quant est pris en charge au Chapitre 4. Ce travail a pour objectif essentiel de minimiser l’impact
de ces communications sur la durée globale d’exécution de l’application.

Avec les architectures multi-cœurs, plusieurs cœurs peuvent accéder au bus partagé en
même temps. Par conséquent, le calcul des latences de transfert, entre les cœurs et la mé-
moire hors puce via le bus, doit prendre en compte un délai de contention. Ce délai dépend gé-
néralement du nombre de cœurs en conflit pour l’accès au bus partagé. Le calcul des latences
de communication dans le Chapitre 2 utilise un délai de contention dans le cas le plus défavo-
rable, qui considère toujours que tous les autres cœurs demandent également à accéder au

8

Résumé de thèse

bus partagé, au même instant. Même si très pessimiste, ce cas défavorable fournit une base
de référence permettant la comparaison lors de l’ajout, à l’ordonnancement, de conscience
des conflit dans le Chapitre 3. Une évaluation empirique montre que la résolution d’un pro-
blème d’ordonnancement, tout en recherchant un optimum exact ne s’adapte pas aux grand
problèmes (comme prévu). Pour les cas de test impliquant un grand nombre de tâches, le seul
moyen d’obtenir une solution consiste à s’appuyer sur une méthode approximative. Ensuite,
une évaluation empirique, dans la Section 2.4.3, montre que le paramètre spécifique Tslot d’un
bus FAIR Round-Robin, a un impact négligeable sur la durée de l’ordonnancement.

Le modèle de conflit dans le cas le plus défavorable est un choix sûr par construction, mais
il conduit à une sur-approximation importante qui est ensuite affinée dans le Chapitre 3. Dans
ce chapitre, la méthode d’ordonnancement proposée utilise la connaissance de la structure de
l’application conjointement à celle de l’ordonnancement courant, pour affiner, au moment de
la conception et pour chaque phase de communication, la pire quantité réelle d’interférences.
Cette méthode s’est révélée efficace avec l’évaluation empirique de la section 3.4 montrant une
amélioration moyenne de 59% par rapport au pire des scénarios. Toutefois, des expériences
ont également montré que, dans la plupart des cas, le fait de permettre à l’ordonnanceur de
choisir entre éviter les contentions dans l’ordonnancement ou les autoriser avec un calcul précis
de celles-ci, aboutissait à des ordonnancement exempts de conflits. Cette observation doit
cependant être mise en perspective avec le fait que les travaux présentés ne considèrent que
des graphes de tâches avec la sémantique AER.

Afin de poursuivre l’affinement des délais de contention, la contribution du Chapitre 4 dé-
crit une méthode d’ordonnancement statique générant des ordonnancements sans contention
et dont les communications sont non-bloquantes. L’ordonnanceur tire parti du moteur d’accès
direct à la mémoire (Direct Memory Access engine – DMA) et de la SPM à double accès, afin
de masquer les accès au bus lorsque l’unité de traitement est occupée à effectuer des calculs.
L’approche présentée fragmente les communications pour augmenter les possibilités de che-
vauchement avec les calculs. L’évaluation empirique montre que, comparée à un scénario sans
chevauchement, cette approche améliore la longueur d’ordonnancement 4% en moyenne sur
les applications en flux-continu (8% sur les graphes de tâches synthétiques). Néanmoins, des
expériences montrent également que le fait de permettre différentes stratégies de fragmenta-
tion peut augmenter encore le gain ; lorsque l’on évite des frais de transfert minimes, jusqu’à
6, 5% avec les applications de flux-continu. En outre, différentes méthodes de tri provenant de
l’algorithme heuristique sont évaluées, mais aucunes d’elles ne semblent surpasser aucunes
autres. Enfin, l’implémentation réalisée avec succès est résumée, elle porte sur la réalisation
des ordonnancements générés par l’heuristique avec pour cible une grappe de la plateforme
Kalray MPPA Bostan [DVP+14]. Sur cette plate-forme, le gain observé pour l’ordonnancement
avec fragmentation par arc du graphe, par le paramètre Dslot, ou par DTU en mode non blo-
quant est respectivement : 36%, 22% et 24%. Avec des gains au-delà de nos attentes, cette
mise en œuvre valide les avantages de notre stratégie d’ordonnancement.

Contenu de la thèse

Le reste de cette thèse est divisé en quatre chapitres principaux, résumés comme suit :

9

Résumé de thèse

Chapitre 1 introduit le contexte de cette thèse à travers une revue des systèmes temps-réel
et des plateformes multi-cœurs. Cela commence par les modèles d’applications fondamentaux
et leur expressivité. Ensuite, des plateformes multi-cœurs sont présentées, dans lesquelles
la prévisibilité et le déterminisme sont des caractéristiques essentielles. Des caractéristiques
similaires sont ensuite prises en compte dans les modèles d’exécution qui spécifient comment
les applications parallèles sont exécutées sur des plateformes multi-cœurs. Enfin, un examen
des travaux précédents sur les stratégies d’ordonnancement / placement pour les applications
en temps réel sur des architectures mono-cœurs / multi-cœurs est présenté.

Chapitre 2 présente la infrastructure d’ordonnancement extraite de la littérature et utilisée
comme base pour les contributions suivantes. Notre infrastructure peut calculer un placement
et un ordonnancement statiques pour une application s’exécutant sur un multi-cœur en tenant
compte d’hypothèses initiales simples (par exemple, le cas le plus défavorable de conflits).
Toutes ces hypothèses restrictives sont abandonnées dans les chapitres suivants, à savoir la
prise de conscience de la contention dans le Chapitre 3, et l’évitement des conflits dans le
Chapitre 4. L’infrastructure est d’abord détaillée avec une formulation ILP (Integer Linear Pro-
gramming) et à l’aide d’un modèle de contention projetant le cas le plus défavorable. Ensuite,
un algorithme basé sur l’ordonnancement par liste est présenté. Il utilise le même modèle de
conflits mais permet de mieux s’adapter aux grandes applications. Certaines expériences ini-
tiales démontrent la viabilité de l’heuristique.

Chapitre 3 décrit une nouvelle technique permettant de prendre en compte la quantité réelle
d’interférences lors de l’ordonnancement hors ligne. Il présente la méthodologie et sa mise en
œuvre à la fois via une technique demandant un calcul intensif mais fournissant des résultats
exacts, et via un algorithme plus rapide mais fournissant des résultats approximatifs. Enfin, les
expériences démontrent que la sur-approximation de l’algorithme est limitée, suivi des gains de
la méthode opposé à celle du chapitre ?? qui inclue un scénario de conflit pire cas. La dernière
expérience discute les améliorations de cette méthode par rapport à une méthode existante
adaptée dont les ordonnancements sont sans conflit.

Chapitre 4 relâche certaines des hypothèses restrictives sur le matériel afin de s’appuyer
sur une plateforme plus réaliste. Tout d’abord, la restriction sur la taille de la mémoire SPM
(ScratchPad Memory) est supprimée tandis que le temps de latence pour transmettre des don-
nées sur le bus est masqué. Pour augmenter les possibilités de masquage, la communication
est fragmentée. Les expériences valident d’abord le comportement de l’heuristique par rapport
à la formulation ILP. Ensuite, le gain est exprimé par rapport à l’infrastructure de base du Cha-
pitre 2 incluant un scénario de communication non-masquant et non-fragmenté. La dernière
expérience traite de la taille des fragments utilisée dans les stratégies de planification.

Chapitre 5 conclut cette thèse en résumant toutes les contributions présentées. Des tra-
vaux futurs possibles sont ensuite introduits afin d’optimiser davantage l’ordonnancement des
systèmes temps-réel-dur sur du architectures multi-cœurs.

10

INTRODUCTION

In 1969, Neil Armstrong, Buzz Aldrin and Michael Collins made a giant leap for mankind
when walking on the moon. Their journey started with the launch of the rocket Saturn V which
is considered as the first safety-critical system. The rocket included the Apollo Guidance Com-
puter (AGC) which ran a real-time operating system. This system enabled astronauts to enter
simple commands to control the rocket. The hardware architecture included, among other
devices, a 16-bits single-core processor which had approximately 64 Kbytes of memory and
operated at 2.048 MHz 2. As a naive comparison, modern smartphones offer a thousand times
more computing capacity than it was required to launch and safely return astronauts from the
moon. Computational demand has kept increasing ever since, and hardware manufacturers
continuously improved chip manufacturing techniques, both in terms of transistors density and
clock frequency. Until 2004, this growth followed the Moore’s law [Sch97]. Until it reached a
technological limit, known as the Power Wall [Kur01]. This limit initiated from power leakage
and heat of the chip which both increase with the diminishing size and the raise of transistors
frequency.

Due to the Power Wall, increasing the density and frequency was not an option anymore.
The solution found to augment the processors computational power without increasing the fre-
quency was to extend the number of cores within a chip. It is now very common to find com-
mercial mainstream processors with 4, 8 or more cores. For example, the Intel© Core™i[3-9]
includes from 2 to 18 cores. Critical systems cannot escape from this processors’ evolution
and now increasingly include multi-/many-core processors at the heart of their hardware, such
as automotive, avionic or space industries [BDN+16; Per17]. Therefore, the innate idea of this
dissertation integrates this evolution by targeting multi-core usage in safety-critical systems.

Real-time computing refers to applications that compute correct results but, and more im-
portantly, applications that perform on-time. As pictured in Figure 1, their goal is not to be fast,
but rather to be on-time. In addition to usual system constraints (e.g. performance, energy),
real-time systems include timing constraints that need to be satisfied by the system in order to
provide a safe computation. Examples of timing constraints are, among others, release time,
deadline, worst-case execution time, In a safety-critical system with timing constraints, fail-
ing one constraint can lead to disastrous consequences. For example, in the avionic domain, a
timing constraint failure can cause a waste of human lives in a crash; for a satellite, billion euros
might end wasted with the satellite burning into the atmosphere. Depending on their criticality
level, real-time systems can be classified in three categories [SR94]:

2. https://en.wikipedia.org/wiki/Apollo_Guidance_Computer

11

Introduction

Hard: missing a timing constraint is
a total system failure.

Firm: infrequent timing constraint
misses are tolerable, but may de-
grade the system’s quality of service.

Soft: the usefulness of a result de-
grades after its deadline, thereby de-
grading the system’s quality of ser-
vice Figure 1 – Real-time is not real-fast

Designing a hard real-time system requires more attention and strict guarantees, espe-
cially on timing constraints, than any other systems, from Reineke [RGB+07] : "An important
part in the design of hard real-time systems is the proof of punctuality which is determined by
the worst-case performance of the system.". In this context, the worst-case performance corre-
sponds to the execution scenario where the time to execute the software on the hardware is the
longest possible. In addition, to enforce the strongest guarantees, this worst-case performance
is computed a priori, which means without actually executing the software on the platform (this
is also known as a static approach). However, determining the worst-case performance is ex-
tremely tedious, especially when determined a priori. Main issues originate from the absence
of detailed information on the hardware parts. Indeed, in modern complex multi-core platforms,
many components speculate on the execution flow (e.g. out-of-order pipelines, branch and
value prediction, shared cache levels, . . .) . Because results from speculations are hard to
predict without actually executing the program, this ends in an under-utilisation of the platform
capacity as in practice the over-provisioned worst-case has almost no chance to actually hap-
pen. In addition, manufacturers mostly hide, in their commercial platforms, such details about
the architecture due to intellectual property restrictions. In some specific cases, hard real-time
system designers mostly rely on custom architectures designed for their domain (e.g. the Leon
processor from the European Space Agency (ESA) [Gai02] or on an abstraction of the platform
[BB08]). Due to cost constraints (specific platforms are expensive) and the absence of con-
straints regarding the application domain, contributions of this dissertation show how to reduce
this over-provisioning when computing worst-case performance on an abstracted multi-core
architecture.

Multi-core hardware platforms, even when designed specifically for hard real-time systems,
lead to unpredictability when two or more cores request an access to the same resource at an
identical moment in time. In this case, it might be impossible 3 to determine, a priori, the actual
granting order. However, this order has an impact on the worst-case performance as one task
can complete before an other one. Figure 2 shows two executions where the X-axis denotes
time and where solid arrows are release times. On both figures, a computing task (plain box)
follows a bus request (dotted box). Each computing task is executed on an individual core,
named P1 or P2. In addition, a shared bus connects the two cores. Because only one bus

3. This, obviously, depends on the arbitration policy, for example it is easy to determine the order with a TDM
arbiter, but impossible with a RR one where the worst-case should be considered. See Section 1.4 for a review on
arbiters.

12

Introduction

request can be performed at a time (mutually exclusive), both of them initiate from different
cores, therefore need to be scheduled. In Figure 2a, the overall makespan is 25 time units
where it decreases to 20 time units in Figure 2b just by inverting the granting order of the
two bus requests. It is therefore clear that the order of bus requests impacts the final overall
execution time of the application. This shared bus is the central component of this study.

P1

P2

0 10 20

Bus usage

Bus usage

t
(a) Overall makespan is 25 time units

P1

P2

0 10 20

Bus usage

Bus usage

t
(b) Overall makespan is 20 time units

Figure 2 – Illustrating example showing the importance of the execution order

Prior to run an application on a multi-core platform, a mandatory step is to decide on which
core and when to execute application tasks. A scheduler maps tasks on cores and orders their
execution on this core. As seen in Figure 2, mapping and scheduling decisions impact the
overall execution time of a parallel application on a multi-core processor. The main point of this
dissertation is the construction of scheduling policies where the objective is to minimise the
schedule length while taking care of bus accesses.

Even when relaxing the indeterminism caused by context sensitive hardware decisions
(speculative features, or arbiters), worst-case performance analyses can be unable to provide
a result. Indeed, some common software features (e.g dynamic memory allocation, goto) lead
to statically unpredictable behaviours. Despite programming rules to avoid such indeterministic
behaviours, the compiler plays an important role for worst-case performance. At compile time,
the timing behaviour can drastically change due to optimisations [PDC+18]. Thus, safety-critical
applications require specific programming languages as well as verified compilers to determine
and prove worst-case performance. Programming language features and compilers are out of
the scope of this dissertation, and in this work, we only consider compilers where optimisation
passes are disabled.

In summary, the presented work of this thesis targets hard real-time applications running
on multi-core platforms. More specifically, we focus on bus requests management and aim
at decreasing the impact of worst-case transmission latencies. This, in turns, decreases the
over-provisioning of hardware resources, and inherently increases the utilisation of the platform
reaching the goal of minimising the worst-case performance.

Challenges in real-time systems

Guaranteeing that timing constraints are met on both single-core and multi-core platforms
is challenging. The first challenge lies in the computation of the Worst-Case Execution Times
(WCET). WCET estimates correspond to a safe and tight upper bound of the execution time

13

Introduction

of an application executing on a given platform. As represented by Figure 3, a safe WCET
estimate must be proven to be higher or equal to any effective execution time. For hard real-
time systems, static WCET analyses produce the strongest guarantees on the results in terms
of both safety and accuracy. Achieving such complex analyses requires detailed information on
the hardware platform (pipeline, caches, . . .) to devise tight estimates [WEE+08]. A common
practice is to perform the analysis at the binary level, as this is the closest representation to
what is executed by the hardware. However, control flow information (e.g. loop bounds) are
generally lost at compile time, although they are required to estimate WCETs [LPR14]. In
order to be safe, the WCET estimation assumes conservative hypotheses, where reducing the
induced pessimism remains a challenging issue.

Figure 3 – Worst-Case Execution Times (WCET)

Once WCETs are estimated, a scheduling policy defines the execution order of tasks.
Based on this policy, a task might be delayed, or pre-empted (paused and resumed), or forced
to wait for a (software/hardware) resource to be available. The task is then blocked for a cer-
tain amount of time. The addition of a WCET estimate and a blocking time corresponds to the
Worst-Case Response Time (WCRT). Therefore, computing this blocking time and the WCRT
is a major challenge for real-time systems.

In addition, the schedule generated according to a given policy must enforce that the ex-
ecution order implied will enforce a timing constraint for all tasks of the application. Proving
the feasibility of a scheduling policy and bounding its computational complexity is still an open
problem for certain combinations of policies and task models. For example, in a very recent
work Ekberg et al. [EY17] have proven that using sporadic tasks with fixed priority scheduling
on uniprocessor is a NP-Hard problem.

Moreover, multi-core platforms need a mapping of tasks on cores along with a schedule.
Mapping analysis decides on what core a task will be mapped, Coffman et al. [CGJ96] have
shown that this problem is NP-hard as it reduces to the well known bin-packing problem.

The main evolution from single-core to multi-core architecture focuses on the management
of shared hardware resources (buses, shared last level of cache, . . .) that are shared tem-
porally and physically. When running multiple tasks on a single core, only a single task can
execute on the processor and can have access to other resources at a given time instant.
When dealing with multiple cores, multiple tasks will compete to access software/hardware re-

14

Introduction

sources (e.g. bus, sensors, semaphores . . .) at an identical moment in time. Access requests
must then be ordered/prioritized, since only a single request can be fulfilled at a time. These
tasks, hence, interfere with each other and such interferences influence their predictability and
timing behaviour. Identifying the region in which contention occur, and precisely estimate this
contention is an other key challenge as it has a significant impact on the WCRT of tasks. Since
it is difficult in general to guarantee the absence of resource conflicts during execution, current
WCRT techniques either produce pessimistic WCRT estimates or constrain the execution to
enforce the absence of conflicts, often at the price of a significant hardware under-utilisation.

Contributions

Contributions of this work address hard real-time applications running on multi-core plat-
forms and are applied at design time. The general contribution focuses on bus requests man-
agement and aims at decreasing the impact of worst-case transmission latencies on schedule
length. The presented work optimises the overall schedule makespan and increases the utili-
sation of the platform.

The first proposed method aims at determining the effective amount of interferences in a
static schedule in order to reduce the pessimism of worst-case contention model. It consists
in a contention-aware scheduling strategy that produces time-triggered schedules of the ap-
plication’s tasks. Based on knowledge of the application’s structure, this scheduling strategy
precisely estimates the effective contention, and minimises the overall makespan of the sched-
ule. An Integer Linear Programming (ILP) solution of the scheduling problem is presented, as
well as a heuristic algorithm that generates schedules very close to the ILP results (2 % longer
on average), with a much lower time complexity. The heuristic improves by 59% the overall
makespan of resulting schedules compared to a worst-case contention baseline.

We extend our first approach to further reduce the overall schedule makespan by relaxing
previous assumptions on the hardware, which in turns, enables new scheduling opportunities.
The second contribution therefore proposes techniques to select ScratchPad Memory (SPM)
contents off-line, jointly with schedule generation, in a way such that the cost of SPM load-
ing/unloading is hidden, thanks to overlapping communication and computation phases. More
precisely, we take advantage of communication fragmentation to bring more opportunities to
benefit from such overlapping. Experimental results show the effectiveness of the proposed
techniques on streaming applications and on synthetic task-graphs. The length of generated
schedules is reduced by 4% on average on streaming application (8% on synthetic task graphs)
by overlapping communications and computations.

All the code of the scheduler is available at https://gitlab.inria.fr/brouxel/methane.

Thesis outline

The rest of this thesis is divided into four main chapters, summarised as follows:

Chapter 1 introduces the context of this thesis through a review of real-time systems and
multi-core platforms. It starts with the fundamental application models and their expressive-

15

https://gitlab.inria.fr/brouxel/methane

Introduction

ness. Then, multi-core platforms are presented, in which predictability and determinism are
key features. Similar features are considered, afterwards, with execution models which specify
how parallel applications are executed on multi-core platforms. Finally, a review of prior results
on scheduling/mapping strategies for real-time applications on single-/multi-core architectures
is given.

Chapter 2 presents the scheduling framework extracted from the literature and used as
a baseline for following contributions. Our framework can compute a static mapping and
scheduling for an application mapped on a multi-core considering simple initial hypotheses
(e.g. worst-case contention). All those restrictive hypothesis are lifted in following chapters,
i.e. contention-awareness in Chapter 3, and free from contention in Chapter 4. The framework
is first detailed with an Integer Linear Programming (ILP) formulation, and using a worst-case
contention model. Then, a list-scheduling-based algorithm is presented which uses the same
contention model to scale better on larger applications. Some initial experiments demonstrate
the viability of the heuristic.

Chapter 3 describes a novel technique to account for the effective amount of interference
in off-line scheduling algorithm. It presents the methodology and its implementation in both a
computationally intensive but exact method and in a faster but approximate algorithm. Finally,
experiments demonstrate the limited over-approximation of the algorithm, along with gains over
the framework from Chapter 2 with a worst-case contention scenario. The last experiment
discusses the improvements over an adapted state-of-the-art algorithm with contention-free
scenario.

Chapter 4 lifts some of our restrictive hypotheses on the hardware in order to rely on a more
realistic platform. First, the restriction on the size of the ScratchPad Memory (SPM) is removed
while the latency to transmit data on the bus is hidden. To increase hiding opportunities, com-
munication are fragmented. Experiments first validate the behaviour of the heuristic over the
ILP formulation. Then, the gain is expressed over Chapter 2 baselines with a non-overlapping
and non-fragmented communication scenario. The last experiment discusses the size of the
fragment used in the scheduling strategies.

Chapter 5 concludes this dissertation by summing up all presented contributions. Then
possible future works are devised to further optimise the schedule makespan of hard real-time
software on multi-core hardware.

16

CHAPTER 1

HARD REAL-TIME SYSTEMS AND
MULTI-CORE PLATFORMS

Designing hard real-time systems implies to carefully select all hardware and software com-
ponents. In order to guarantee the timing behaviour of the system. This chapter lists different
possibilities where the production of a safe system is the Holy Grail.

We assume that a real-time system contains a number of tasks, that fulfil the functional
requirements. A task generally exhibits a variation in its execution time. The Worst-Case
Execution Time (WCET) estimate of a task corresponds to an upper bound of any possible
execution time for that particular task.

Then all tasks from the set will eventually be executed on a given core, but only one can
execute at a time per core. Hence, a scheduling policy describes how to construct an execution
order for a given task-set, also known as a schedule. At design time, a schedulability analysis
proves (or disproves) that the pair tasks-set, scheduling policy is schedulable, i.e. a schedule
exists and meets all timing constraints.

The task WCET estimation is influenced by the schedule, for example, the initial cache state
for a task depends on the task previously executed. Moreover, analysing the schedulability of
a system requires each task WCET estimate. As a consequence, both WCET estimation and
schedulability analysis are co-dependent, as each one impacts the other.

The evolution to multi-core architectures increases this co-dependence. In the general case,
mapping decisions influence the WCET estimation accuracy. Indeed, two cores impact each
other WCET estimations when mapped on different cores with overlapping request time on a
shared resource.

To break this co-dependence, nowadays techniques manage to enforce timing isolation.
The isolation in time enables to study the timing behaviour of a component in independence
from the others with the guarantee that no other components will affect the result. Applying this
timing isolation principle can be accomplished at different levels from the hardware with cache
locking or ScratchPad Memory (SPM) (e.g. [PP07]), on the execution model with the separation
of the memory access from the computation (e.g. [PBB+11]), or on the communication model
with contention-free mechanism (e.g. [BDN+16]).

This chapter reviews these different key concepts to, at the end, focus on state-of-the-art
techniques on scheduling. It is organised as follows. First, Section 1.1 introduces different
task models and Section 1.2 different hardware designs for real-time systems. Then, Section
1.3 presents execution models enforcing timing isolation, followed by Section 1.4 describing
available communication configurations. Next, Section 1.5 summarises methods to determine
WCETs. Finally, Section 1.6 presents a review on real-time scheduling targeting multi-core
architectures before concluding in Section 1.7.

17

Hard real-time systems and multi-core platforms

1.1 Task models and their expressiveness

A task model, a.k.a workload model, describes the properties of a real-time application. At
a coarse grain, tasks compose the application. A task corresponds to a piece of code. At a
finer grain, tasks infer task instances, known as jobs. Each job corresponds to an instance of
a task that is effectively scheduled and executed on the platform. A task can generate multiple
jobs depending on its timing properties and the studied time window. Jobs are ordered and job
i must complete before job i+ 1. Depending on the level of abstraction and expressiveness of
further task models, properties defined for tasks and/or jobs include :

— WCET: an upper bound of any possible execution time,

— period: the frequency at which the task/job is ready for execution,

— deadline: the time at which the execution must be complete,

— predecessors/successors: execution order constraints.

Differences between task models essentially come from the amount of exhibited information
(expressiveness), the amount of applications it can represent (flexibility), and the applied gen-
eralisation (abstraction level). This section does not attempt to be exhaustive as the multiplicity
of task models is tremendous, but it covers the wide range of possibilities. For a list of other
task models, the reader is advised to look into [SY15].

The seminal work from Liu and Layland [LL73] introduced the periodic task model. It rep-
resents applications where jobs arrival times appear at a known and strict frequency after the
first one (defined at designed time). Then, each job must terminate before a deadline relative
to its arrival time. The lack of flexibility in term of restrictive periodicity was latter relaxed by
Mok [Mok83] with sporadic tasks. This allows releasing tasks at later time point as long as at
least a minimum time interval as elapsed between two firings (pseudo-period). Both cases are
said periodical task models as they generate an infinite sequence of job instances, released
periodically. In addition each job must end before the next one is released.

Three other sub-categories classify the aforementioned task models depending on the
deadline property for the entire tasks set. If for all tasks the deadline is equal to the period
[LL73], the tasks set is implicit. If all deadlines are inferior or equal to the period then the
category is constrained deadlines, while arbitrary deadline is otherwise used [Mok83].

Above-mentioned task models lack of flexibility. As an example, a MPEG decoder sequen-
tially receives, decodes and displays video frames. In such codec, a frame is periodically bigger
than others, and thus requires more computational time. Applying the same task/function to all
frames results in an over-provisioning of the system as most frame computation need less pro-
cessor time. The Multi-Frame model [MC96] and its Generalisation (GMF) [BCG+99] allow to
configure different properties, such as WCET estimates, per jobs originating from an identical
task.

Another class of embedded real-time systems concerns signal processing applications.
They mainly focus on images, sounds or any digital signals, e.g. a wireless router, surveil-
lance camera, This type of application processes an uninterrupted flow of information. The
expressiveness of seminal periodic task model does not capture this flow of information which
is transmitted from task to task. In [Ack82], Ackerman expressed the data-flow program graph
task model, known as Directed Acyclic Graph (DAG) when no cycle are present. This repre-
sentation increases the expressiveness of the task-model by exhibiting dependencies between

18

1.1. Task models and their expressiveness

D J

1

E

2

2

1

3

5A

B

C

A

F

G

H

2

2

2

1
1

Figure 1.1 – Example of an application represented by a DAG

tasks, thus exposing the parallelism of the application. In data-flow graphs, nodes represent
computations (tasks) and edges represent communications between tasks. An edge is present
when a task is causally dependent on another one, meaning the source of the edge needs to
complete prior to run the target. The edge corresponds to a First In First Out (FIFO) channel
where the source produces a certain amount of tokens, and the sink consumes all of them. An
example is presented by Figure 1.1 where labels on edges represent the number of tokens.

Similarly to periodic task models, a data-flow graph instance is called an iteration and a job
is a task instance inside an iteration. Then, the DAG may iteratively executes until the end of
time (or platform is shutdown). Hence, jobs execution order follows aforementioned constraint,
job i finished before job i+1. But, the iteration j+1 can start before the completion of iteration j
as long as jobs dependencies are satisfied. This allows to exploit job parallelism, i.e. pipelining
[TPG+14].

In data-flow graphs, timing properties (e.g. period, deadline) can be attached to graph itself
and not anymore stated for each task and job. All tasks must therefore complete their execution
between the release time and the deadline of the whole graph. A multi-task application is then
a multi-DAG application as in [Per17].

In general DAGs, edge sinks consume all tokens produced by the corresponding source in
one job execution. To overcome this limitation, Synchronous Data-Flow (SDF) graphs [LM87]
allow different production/consumption rates between two actors of an edge. An additional
constraint on SDF forces the amount of transiting tokens to be known at compile time which
allows static analysis on the graph, see Figure 1.2a.

Due to different rates of production and consumption of tokens on an edge, SDF graphs
need an expansion pass prior to be scheduled. The larger expansion builds an Homogeneous
Data-Flow graphs (HSDF) [LM87], where all production/consumption rates are equal to 1 (there
is as much tokens produced than consumed). Despite of the exponential complexity when ex-
panding SDFs, HSDF representations are required [GHK+13] to determine, a priori, the amount
of node repetitions and all number of transmitted tokens. Figure 1.2b presents the example
HSDF obtained after expanding the SDF from Figure 1.2a.

Due to the inherent complexity of building a HSDF, middle size graph representations have
been proposed by Zacki [Zak13]. Partial Expansion Graph (PEG) exposes more parallelism
than SDF, with potentially less tasks than HSDF. Therefore, using strength from both initial
representations.

19

Hard real-time systems and multi-core platforms

A B C D
8 2 21 3 2

4 4

(a) Example of a SDF

A

B
1

C
1

D
12

B
2

2 1
2

1

B
3

2

1

B
4

2
1

C
2

D
2

D
3

2

2

2

1

1

(b) HSDF version of Figure 1.2a

A

B
1

C

D
1

2

B
2

4 2
4

2
D
2

D
3

4

2

2

(c) One possible PEG from the SDF in 1.2a

Figure 1.2 – An SDF example and its transformation to HSDF and one possible PEG

In streaming applications, fork-join graphs [TKA02] correspond to an adaptation of SDF
graphs. Identically to SDF, they can include different production/consumption rates. They also
need to be expanded for further analyses. In contrast to SDF, all actors, except specific fork
and join nodes, can have one and only one predecessor and successor. Figure 1.3 exhibits an
expanded version of a sample fork-join graph.

Applying the multi-rate idea from GMF to SDF, Bilsen et al. [BEL+96] introduced the Cyclo-
Static Data-Flow graph (CSDF). CSDF graphs allow to have different production/consumption
rates within a period to jobs of the same task. The example from Figure 1.4 present a CSDF
where, for example, actor C has a firing rate of (2, 1) on its output edge. Then actor C alterna-
tively produces 2 tokens then 1 token, then 2

Synchronous Data-Flow applications can be represented with different languages, such
as Esterel [BC84], StreamIT [TKA02] or Prelude [PFB+11]. They all have their specificities,
Prelude targets multi-periodic synchronous system, while StreamIT generates fork-join graphs
targeting streaming applications. All help building parallel applications represented by graphs.

These DAGs do not necessarily need to be built from scratch, which would require an im-
portant engineering effort. It is possible to extract tasks from legacy sequential code as in
[FDC+13; CM12; CEN+13].

The literature abounds of other graph-based task model, e.g. Hierarchical Task Graph
[GP94], Dynamic Data Flow graphs [BDT13]. Only the most common were presented here and

20

1.2. Predictable multi-core architectures

split

B
1

C 2
B
2

2
1

2
1

B
3

2
1

B
4

2 1

A

Id

join

4 4

12

8
D

Figure 1.3 – Expanded example of a fork-Join graph

A B C D

(2,1,2,1,2)

2 21 (2,1) 2

4 (1,3)

Figure 1.4 – Example of a CSDF

not all of them are suitable for critical applications. An attractive task model for real-time sys-
tem lies in its expressiveness (no ambiguities, expose parallelism) without too much flexibility
(concise) and too high abstraction (remain implementable), therefore allowing proof of timing
behaviour.

1.2 Predictable multi-core architectures

For a long time, increasing the computational power of a processor meant increasing the
processor clock frequency. Then, manufacturers started to increase the number of cores within
a chip instead of the clock frequency, due to technological limits.

In general-purpose multi-core processors, speculative features are key concepts to increase
average case performance but mostly worsen WCET estimates. These features are also ma-
jor sources of indeterminism at different levels: micro-architecture, predictors, memory hierar-
chy, inter-connection medium, and arbiters. Compared to single-core architectures, in multi-
core platforms, the indeterminism comes mainly from interferences when cores try to access
a shared hardware element. To fulfil all requirements, hard real-time systems need specific
architectures with both properties :

— Determinism: it corresponds to the absence of randomness. With identical given inputs, a
deterministic system always produces identical results. Then, with real-time systems, de-
terminism also includes timing constraints where these identical results require identical
production times.

21

Hard real-time systems and multi-core platforms

— Predictability : it corresponds to the ability to determine the produced result in advance
(without executing the system) for given inputs. Again, with real-time systems, predictabil-
ity includes the ability to guarantee that timing constraints are met without actually exe-
cuting the system.

Real-time-oriented multi-core architectures are classified according to the presence of tim-
ing anomalies or domino effects [WGR+09; HRW15]. Timing anomalies on the WCET arise
when the local worst-case does not entail the global worst-case [CHO12]. The often cited ex-
ample [LS99] comes from an instruction cache miss that is the local worst-case of a cache
analysis, but turns out to not lead to the global worst-case in presence of an out-of-order
pipeline. The domino effect is a specific kind of anomalies where an initial local state have
an expected impact on the local WCET, but no convergence is possible on the global WCET.
For example, the execution time of a loop body differs according to the initial state (caches,
pipeline, . . .) when entering the loop [Ber06]. Following four general architecture categories
classify the further next multi-core architectures:

— Composable: the timing of a program running on a core is not influenced by ones run-
ning on other cores (no domino effect) and is free from timing anomalies, such as Pat-
mos+Argo [SSP+11; KS14] ;

— Full timing compositional : platforms do not exhibit timing anomalies but core analysis are
dependent (domino effect), such as Kalray [DVP+14];

— Compositional with constant bound effect : these exhibit timing anomalies but no domino
effects, such as TriCore [WCM16];

— Non-compositional : all other architectures, especially general purpose ones, that include
timing anomalies and domino effect.

Following is a, non exhaustive, list of architectures designed for predictability and determin-
ism.

The academic core Patmos from Shoeberl et al. [SSP+11] is available on FPGA. It contains
a simple RISC in-order pipeline with five stages, see Figure 1.5. All timing information of the
Instruction Set Architecture (ISA) are available in [SBH+15]. Different caches/local memories
configurations make this core a good candidate for research work. It includes the common
instruction/data caches with Least Recently Used (LRU) policy, which is known to be predictable
[RGB+07]. But it also comes with other cache types: method cache [DHP+14], heap cache
[SHP13; HPS10], stack cache [ABS13]. Split caches separate the source of indeterminism
from dynamic allocation and split analyses. Instead of split caches, it is possible to connect
the core pipeline to a ScratchPad Memory (SPM). Such memories are more predictable than
caches [PP07; MB12] as they are managed by software. Then a compiler decides what and
when to store/load data to/from it. To integrate Patmos on a multi-core platform, it is shipped
with two fully predictable Networks on Chip (NoC):

i) a bluetree NoC [SCP+14] to access the off-chip memory with a Time Division Multiplexing
arbiter ;

ii) a 2-D Mesh NoC [SBS+12; KS14; KS15; KSS+16] to enable inter-core communication,
also using time division for the arbitration policy.

22

1.2. Predictable multi-core architectures

Figure 1.5 – Patmos core (left side) and its Argo NoC (right side), from [KS14]

The Patmos core+Argo NoC is a fully composable architecture, free from timing anomalies,
and allows composable analysis due to the full timing isolation thanks to Time Division Multiple
Access (TDMA) arbiters.

The commercial platform Kalray MPPA 256 [DVP+14] contains 256 cores organised in 16
tiles of 16 cores each (see Figure 1.6). All tiles are connected to a 2-D bi-torus NoC enabling
packets to transit between tiles, to the off-chip memory, or I/O devices. Inside a tile, the 16
cores are connected to every 16 memory banks (SMEM) through 8 buses (cores are paired).
In addition, the SMEM can be configured to enable a private memory to each core, similarly to
the SPM in Patmos core. All cores are based on a simple RISC pipeline with seven stages. A
vast literature dealing with the Kalray MPPA exists, e.g. [HMC+16; BDN+16; SS16; Per17].Its
strengths include an important computational power and design choices with predictability in
mind. Some sources of indeterminism still subsist, for example when a tile receives a packet
from the NoC: the fixed priority arbiter gives a higher priority to packets coming from the NoC,
then they are store in the SMEM; this process adds a delay to cores inside the tile that would
also access the same memory bank, and packets coming from the NoC are hardly predictable.
The Kalray MPPA is a fully compositional architecture, where WCETs of tasks running on each
core are influenced by other cores or NoC incoming packets (domino effects).

From the automotive domain, Wang et al. [WCM16] use a TC27x TriCore micro-controller
from Infineon 1. This platform includes a SPM attached to each core. With its three cores,
two identical cores TC1.6P and another core TC1.6E, this processor is heterogeneous. But
all these three cores execute the same instructions set. Two independent on-chip buses allow

1. TriCore Microcontroller, http://www.infineon.com/

23

Hard real-time systems and multi-core platforms

Figure 1.6 – Kalray core (left side) and its NoC (right side), from [DVP+14]

shared resources interconnection, as well as, system peripherals accesses. A Direct Memory
Access (DMA) engine connects the global off-chip memory and cores. The TriCore is assumed,
but not formally proven, to belong to the category of compositional architectures with constant-
bounded anomalies [AEF+14].

1.3 Towards parallel and predictable execution models

An execution model defines how programs are processed by the hardware. The very first
execution model was described by Turing [Tur37]. He detailed how to manipulate symbols on a
strip of tape according to a table of rules. This principle was then adapted into von Neumann
architecture [Neu82], or in sequential programming language such as C [Rit93].

To benefit from the multiplicity of cores in modern architectures, execution models expose
the parallelism of an application. OpenMP [MB12] provides an extension to C code based
on pragmas to expose possible parallel regions of code. GPU architectures exhibit a specific
execution model [ND10] based on group of instructions, i.e. a warp, where all instructions inside
a group execute in parallel.

Task models based on graph, e.g. SDF graph [LM87], naturally expose the potential con-
currency of applications. Gordon et al. [GTA06] present a method to benefit from all sources
of parallelism implied by the SDF task model, in particular they use task pipelining to maximise
the throughput of the application.

In hard real-time systems, timing verification can be facilitated with following execution mod-
els. For example, Pushner et al. [Pus03] limit the program to a single-path, leaving the explo-
ration of the longest path trivial, see Section 1.5 for WCET estimation details.

Figures 1.7 oppose the three execution models commonly used in the literature with respect
to accesses to the main memory. Figure 1.7a presents three tasks (rectangles) running on two

24

1.3. Towards parallel and predictable execution models

t

Px

Py

(a) Example of three tasks with original execu-
tion model. No possible differentiation between
computation and communication.

t

Px

Py

(b) Example of three tasks using PREM, a
memory phase accesses the off-chip memory
to write or read data, then the execute phase
can compute without any more accesses to the
shared memory.

t

Px

Py

(c) Example pf three tasks using AER, a read
phase first fetch data from the main memory,
then an execute phase executes without any
access to the shared memory, finally a write
phase writes back data to the main memory.

Figure 1.7 – Task representation with different execution model

cores (Px, Py), where the X-axis is the time. In this original execution model, memory accesses
and computation are undistinguishable. Therefore it is very difficult to determine if and when
memory accesses arise, and moreover if they interfere. A safe solution is therefore to compute
a pessimistic WCET for each task where all instructions accessing the memory are considered
interfering with similar instructions from other cores.

With the PRedictable Execution Model (PREM), Pellizzoni et al. [PBB+11] decompose a
task in two parts : i) unload modify data produced by the preceding task to the off-chip memory
if need be, then load code and data required by the task into a local private memory; ii) execute
the code without anymore access to the off-chip memory. Figure 1.7b sketches an example
composed with three tasks (rectangles). Each task is divided in two parts, horizontal line boxes
for memory accesses and dotted boxes for computation phases. This decomposition enforces
composability in parallel execution by isolating memory access phases from execution ones.
The WCET of the execution phase can then be computed in isolation. Hence, if coupled with
a SPM, a software-managed memory, it increases the likelihood of predictability as memory
are located in space and time. Lately, PREM became more and more popular, e.g. [MDC14;
AWP15; BMV+15; MBB+15; BDN+16]. The main reason lies in the predictability improvement
by isolating memory accesses. In addition, Light-PREM [MDC14] allows to automatically adapt
any (legacy-)application to the PREM model.

Durrieu et al. [DFG+14] extend PREM with Acquisition Execution Restitution (AER) to en-

25

Hard real-time systems and multi-core platforms

able this timing isolation principle with dependent tasks. AER [MNP+16] unloads the data
produced by a task just after its execution in a third phase. Figure 1.7c displays an example
composed with, again, three tasks (rectangles). Each task is divided in three parts, slashed
lines boxes for acquisition phase, dotted boxes for execution phases, and backslashed lines
boxes for restitution phases. Coupled with a SPM-based architecture, AER is very powerful
to isolate multi-core interferences, hence it improves the predictability. With such an execution
model, it is possible to load all the data into the SPM, execute the code without any further
access to the main memory and then write back results to the off-chip memory.

1.4 Task and Inter-core communication

Aside from the execution model, the communication model defines how tasks exchange
data, and how data transit on the hardware between computational units. First, most com-
mon communication mediums are either a bus or a Network on Chip (NoC). Second, the data
transmission scheme organises sending and receiving point of data. When dealing with a task
model that contains only independent tasks, this last transmission setting becomes optional.
NoCs are out of the scope of this dissertation and will not be discussed anymore.

Communication medium A bus is limited by a bandwidth, also known as a bitrate in this
specific case, which corresponds to the amount of data transmitted per time unit. The major
source of hardware interferences originates on bus accesses generated by cores. Indeed, the
bus connects every core together and with other devices (e.g. I/O devices, off-chip memory),
leaving only one possible path for data transmission. Bus requests are scheduled with the help
of an arbiter, that enforces a mutual exclusion on bus accesses as only one can access the bus
at a time.

DRAM
R.1

R.2

R.3Bus

Round-
Robin

Figure 1.8 – Representation of the Round-Robin policy principle. Access order is R.1, R.2, R.3

The probably most used bus arbitration policy is the Round-Robin (RR) [Ens77]. Access
requests are enqueued (one queue per core) and served in a round-robin fashion, pictured in
Figure 1.8. In order to improve the predictability, a FAIR-RR arbitration policy [Ens77] limits the
request access time for each core to the bus with a time sharing mechanism.

26

1.4. Task and Inter-core communication

t

P3

P2

P1

P4 TDM slots
Waiting time

Figure 1.9 – Example of a TDMA arbitration scheme. Blue filled boxes are TDM slots, granting
time for the corresponding core where horizontal-lined boxes represent memory accesses as
in PREM in Figure 1.7b

Time Division Multiple Accesses (TDMA) arbitration policy [Ens77] enforces timing isolation
and increases the predictability of the hardware [SCT10]. Figure 1.9 pictures a TDMA arbiter
example. Each blue-filled boxes are TDM slots, and horizontal-lined boxes are memory ac-
cesses as in the PREM example from Figure 1.7b. Each core receives a time slot (TDM slot) in
which the arbiter grants the access to the communication medium. TDM slots are guaranteed
to not overlap, thus ensuring an access in mutual exclusion to the shared resource. The arbiter
stores a table with the granting rules when booting up the platform. Then, the core is allowed to
access the bus only when its time slot is active. TDMA arbiters suffer from an under-utilisation
of hardware resources. A core must wait for its allocated time interval to process its request,
and a time slot is wasted if the allocated core has no pending request to transmit [WS11].
To overcome this situation, Poseidon [SSP+14] tries to build the table with application struc-
ture knowledge and scheduling time slots in order to minimise the waiting time for the shared
resource.

Round-Robin arbiters do not suffer from the drawbacks of TDMA ones, but they lack of
predictability. Hence, FAIR-RR arbiters fill this gap by overcoming all drawbacks from vanilla
Round-Robin arbiters and TDMA arbiters with the increase of predictability and no waste of
resources time. FAIR-RR arbiters seem therefore to be the best candidate for multi-core archi-
tectures in the context of embedded real-time systems.

Data transmission scheme Data transmission schemes are architecture dependent. They
depend on the hardware capabilities in terms of available hardware elements and configuration
options.

When a Direct Memory Access (DMA) is available, data transmissions can occur while
the core, which issued the transmission, is processing some computation; transmission are
therefore non-blocking [GPP09]. If no DMA is available, cores initiate their requests and wait
until the end of the transmission; transmissions are therefore blocking [PNP15].

When a SPM is available, if a producer and a consumer are mapped on the same core, then
their shared data do not have to be transferred to the main memory. They can use the shared
SPM, thus saving two bus requests; communications use shared memory with placement op-

27

Hard real-time systems and multi-core platforms

timisation [RDP17]. However, choosing this type of communication must be carefully thought
as data produced may be used by other tasks running on other cores. When only caches are
available, the software can not decide what to store in an other cache than its own. Therefore,
tasks running on cache-based architectures should exchange their data through the off-chip
memory; communications use the shared memory [PNP15].

Lastly, if the hardware offers a global addressing policy along with SPMs, every memory cell
has a different address SPM/off-chip/. . . , then producers can store data into the consumer SPM
or the consumer can read data from the producer SPM; communications are direct [SPS+15].

1.5 Worst-case execution time estimation

Worst-Case Execution Time (WCET) estimation has been widely studied over the years.
This section aims at giving the key techniques to perform this analyse and not an in depth
study. For more information on WCET estimation, a survey is available in [WEE+08].

WCET estimation corresponds to an upper bound of any possible execution time for a soft-
ware task on a hardware platform. WCET estimates properties include both safety and tight-
ness. A safe WCET estimate is guaranteed above any possible execution of the program. While
a tight WCET estimate limits the over-approximation (see Figure 3 from the Introduction).

When a WCET analysis considers a task executed on a dedicated hardware, without any
other task, the WCET estimate is said to be in isolation from the system. Main studies identify
WCET estimates in isolation and WCET estimates including interferences from other tasks.

From [WEE+08], there exists three major categories of WCET estimation techniques:

— Measurement based techniques: they run the software several times on the hardware (or
a simulator) with different inputs to generate the worst-case behaviour. This method re-
sults in tight estimates by nature. But there is no guarantee that the worst-case behaviour
is found, if the worst-case input is never exercised. Therefore this method is not safe for
critical systems;

— Probabilistic methods: they construct a probabilistic curve from WCET measurements.
They differ from the above-mentioned techniques in the number of runs which is lower.
These methods aim at giving a worst-case execution time with a confidence probability.
Tightness in results depends on the probabilistic law applied and safety can be discussed
with the probabilistic confidence factor;

— Static methods: they are from far the most safe, but safety comes at the cost of a pos-
sible over-approximation. To generate tight and safe results, these analyses run at the
binary level. It is usually divided in two steps to first account for the micro-architecture
timing behaviour; i.e. data address analysis, cache analysis, branch predictor analysis,
pipeline analysis and so on And second, a higher level analysis computes the worst-
case execution path of the application and then the WCET estimate, e.g. Implicit Path
Enumeration Technique (IPET).

Apply state-of-the-art WCET analysis techniques, with multi-core architectures, impose to
guarantee the absence of interference caused by other cores, or further analyses are required
to augment WCET estimates by accounting for these interferences. Kelter [Kel15] accounts
for the contention on the bus. Potop et al. [PP13] add the communication cost into the IPET

28

1.6. Real-time scheduling: a state of the art

problem. Ozaktas et al. [ORS13] computes the stall time induced by critical sections and add
them to the IPET problem.

1.6 Real-time scheduling: a state of the art

Real-time scheduling determines the execution order of tasks on a processor. Then, target-
ing multi-core architectures, mapping algorithms determine on which core a task will run. Most
of the times, scheduling on single-core architecture is NP-hard, e.g. with fixed-priority and
sporadic tasks [EY17]. Mapping+scheduling on multi-core architectures is therefore classified
as a NP-hard problem [CGJ96], because the mapping step reduces to the known bin-packing
problem. For the sake of simplicity, when not explicitly stated in the following, a multi-core
scheduling algorithm refers to both a mapping and a scheduling algorithm.

The literature on multi-core real-time scheduling is tremendously vast. Davis and Burns
[DB11] sort scheduling algorithms in three main categories: i) partitioned, ii) global, and iii) hy-
brid. Following the classification of single-core schedulers, further review focuses on multi-core
architectures where the main content focuses on partitioned (including static/off-line) schedul-
ing, while other scheduling policies are summarised. More details on scheduling strategy and
schedulability analysis are available in this very same survey [DB11].

1.6.1 Classification of single-core schedulers

The two first major categories of schedulers represent the construction moment of the se-
lection order: off-line or on-line. The former, statically pre-computes off-line an execution se-
quence for each core. Then at runtime, a dispatcher executes the generated schedule. The
latter executes on-line, and determines the next task to execute according to some criteria, the
most common being assigned priorities and current execution state.

Priorities are assigned to tasks dynamically or statically (also known as fixed). Rate Mono-
tonic (RM) [LL73] scheduling policy statically affects, at design time, higher priorities to tasks
with shorter periods. In contrast, Earliest Deadline First (EDF) [LL73] determines priorities
according to the current execution state of tasks and set higher priorities to unfinished tasks
closer to their deadlines. Multiple other examples exist for fixed or dynamic priorities schedul-
ing policies targeting single-core architectures, e.g. Deadline Monotonic (DM) [LW82] or Least
Laxity First (LLF) [DM89].

On-line schedulers select the task to execute at run time upon task arrivals or terminations
(except few particular cases, e.g. Least Laxity First [DM89] scheduling policy where decisions
are taken at each time instant). Due to the nature of WCET that is likely to not happen, on-
line schedulers are generally more flexible than off-line ones. But their implementation is more
costly. Another solution is to combine off-line and on-line schedulers [CFL+05] to benefit from
the flexibility and low implementation cost.

Because on-line schedulers construct the schedule at run-time, a schedulability analysis is
mandatory, also known as a feasibility test. It statically proves that no task misses a deadline.
In contradiction, off-line schedulers validate at schedule time that no task misses a deadline by
building the schedule in advance [CC10; CC11].

29

Hard real-time systems and multi-core platforms

Pre-emptive scheduling policies, e.g. [LL73], allow a task to be paused/resumed by an
other task. Pre-emption depends on the priority of the current executing task. A higher priority
task pre-empts a lower priority one. Pre-emptive schedules require a Real-Time Operating
System (RTOS) to handle context switches when a task pre-empts another one. Between these
two extreme cases, limited pre-emptive scheduling policy offers an alternative which limits the
number of context switches but remain flexible [BBY13].

An infinite schedule does not need to be built for periodic task models. Instead, the analysis
computes the minimum time a schedule needs to enter in a repetitive pattern. This interval,
known as the hyper-period, corresponds to the Least Common Multiple (LCM) of all periods in
the task set [GGC16]. This principle is extended by Puffitsch et al. [PNP15] for dependent task
set where all dependent tasks have different periods.

1.6.2 Multi-core partitioned scheduling

Partitioned approaches group tasks into partitions. Each partition is assigned to a core and
scheduling algorithms designed on uniprocessor can then be applied (e.g. RM [LL73], LLF
[DM89]). Baruah et al [BB08] find the best partition set for sporadic tasks under constrained
deadlines. Then EDF or RM from [LL73] will schedule each partition on a core.

Off-line schedule problems are solved with different types of algorithm depending on the
wished level of optimality. Integer Linear Programming (ILP) [PNP15; GKC+15] and Constraint
Programming (CP) [GKC+15; Per17] solvers formulate the problem as a series of constraints,
then solving the constraint system results in an optimal solution according to an objective func-
tion. Satisfiability Modulo Theory (SMT) methods [TPG+14; GKC+15] also result in optimal
schedules but logic constraints are applied instead of algebraic ones. Mapping a task set onto
a multi-core is NP-hard [CGJ96], therefore such techniques do not well scale with large prob-
lems. It is a common practice to provide a heuristic aside from a method generating optimal re-
sults, for example in [BDN+16] both an ILP and a heuristic solving the same problem are given.
Such heuristic targets the same goal but with a small possible over-approximation. Hence, the
goal of the heuristic algorithm is to generate a close to optimal result within a much smaller
solving time. In between, meta-heuristics aim at limiting the over-approximation to get closer to
the optimal solution with a control on the solving time ; e.g. Particle Swarm Optimisation (PSO)
[Zak13], genetic algorithms [PK06; WGW+14].

Different objectives drive scheduling algorithms. Among all the different possibilities, the
literature offers to :

— minimise the overall schedule makespan in [YHZ+09; Per17],

— find a valid schedule (not specifically the shortest) [BDN+16],

— optimise the energy consumption [CFL+18],

— maximise throughput [CLC+09],

— minimise total communication cost [TPG+14].

In [KM08; TPG+14] a multi-step process schedules communication and tasks from SDF.
They first augment the graph by adding nodes to model DMA transfers. Then a SMT solver
outputs a schedule before allocating buffers for data transfer. In [TPM14], Tendulkar et al.
add jobs pipelining to there SMT formulation from [TPG+14] to increase the throughput of the
schedule while it was already present in Kudlur et al. work from [KM08].

30

1.6. Real-time scheduling: a state of the art

Following works manage to capture the essence of the targeted hardware platform to gen-
erate more specialised schedules.

Alhammad and Pellizzoni [AP14] propose a heuristic to map and schedule a fork/join graph
onto a multi-core architecture in a contention-free manner. They split the graph in sequential or
parallel segments, and then schedule each segment. They consider only code and local data
access in contention estimations, leaving global shared variables in the main external memory,
where a worst concurrency scenario is assumed when accessing them.

Puffitsch et al. [PNP15] statically schedule periodical dependent tasks on many-core plat-
forms. They account for the memory loading such as SPM, and places preloading time in case
of caches in order to achieve a timing isolation process. They also allow to parametrise the
objective function between the number of used cores, and a threshold of contention along the
bus.

Becker et al. [BDN+16] propose an ILP formulation and a heuristic to schedule periodic
sporadic independent tasks on one cluster of a Kalray MPPA processor. They systematically
create a contention-free schedule.

Nguyen et al. [NHP17] statically schedule DAG on one cluster of a Kalray MPPA architec-
ture. The objective is to build a cache-conscious schedule in which tasks sharing information
are mapped on the same core, and in an order that will maximise cache lines reuse.

Skalistis and Simalatsar [SS17] build a partitioned off-line schedule from DAGs, and min-
imise the overall schedule makespan. Because an off-line schedule uses the WCET of tasks,
which is likely to not happen, an on-line scheduler can fire a job earlier as long as off-line
scheduling decisions are fulfilled.

1.6.3 Multi-core global scheduling

Global methods schedule tasks dynamically and globally on all cores, at a job level. Jobs
from the same task can migrate between cores. They are often adaptations of uniprocessor
scheduling strategies ; EDF becomes Global-EDF [DL78], RM becomes Global-RM [ABJ01].

Because global scheduling may imply a lot of context switches and migration, Anderson et
al [ABD08] improve the initial work from Dhall et al. [DL78] on Global-EDF to limit the number
of migrations.

When dealing with sporadic tasks, new tasks appear with a minimum interval during the
execution of the real-time system. With an online global scheduler, to decide whether to accept
the task or not, the system must recheck the schedulability in an on-line fashion. Therefore,
the admission control algorithm requires an efficient schedulability analysis to limit the decision
overhead. Two methods are proposed by Zhou et al. [ZLL+18]. They identified factors affecting
the efficiency of RTA methods – i.e. unnecessary recalculation of WCRTs under Global-EDF.
They also improved the computational method. However checking the schedulability of a sys-
tem under Global-EDF and Global-RM with sporadic tasks remain pseudo-polynomial.

In [MHN+17], an on-line global scheduler decides which tasks to run in parallel. Decisions
imply to know the memory demand, and the scheduler determine the amount of interferences it
allows. If the scheduler detects more interferences than expected and above a threshold, then
tasks are re-prioritised and pre-empted to drop down the contention.

31

Hard real-time systems and multi-core platforms

1.6.4 Multi-core hybrid scheduling

Because partitioned approaches might under-utilise the hardware, and global scheduling
techniques induce possible high overhead with migration costs, then hybrid scheduling methods
try their best to improve these two factors of performance.

First, semi-partitioned approaches limit the fragmentation of spare capacity. They generally
build an initial partition set which is assigned to a core but this assignation does not remain
immutable, as following defined.

Cannella et al. [CBS14] build a semi-partitioned heuristic scheduler : First-Fit Decreasing
Semi-Partitioned (FFD-SP). As opposed to regular partition algorithms, they allow a whole task
to temporarily migrate into another partition.

Burns et al [BDW+12] give a method to compute partitions which will then be executed with
EDF. The specificity is the possibility for a task to migrate when pre-empted. A task can then
start on a core, and ends on another one, but returns to the initial core at the next firing.

Second, cluster approaches group processors with related properties (e.g. shared caches).
Then a global EDF is applied on the group of cluster [SEL08].

Third, federated scheduling [LCA+14] group tasks depending on their processor utilisation.
The idea is to identify heavy tasks from light ones, where heavy tasks load more the processor
than light ones.

In [JGL+17], heavy tasks are considered on their own. Light tasks are federated and a
federation is considered as sequential sporadic and scheduled at once.

1.6.5 Shared resource management on single-core and multi-core architectures

Shared resources represent anything that tasks are required to share with other tasks. On
the hardware side, the processor core is the first obvious shared resource. But other devices
also can be shared, e.g. bus, memory hierarchy, I/O devices, On the software side, shared
variables are the primal shared resources. Because a shared resource usually only allows one
access at a time, ordering access requests require an arbitration policy or a sharing protocol.
Because a request might be delayed due to interferences with other ones, real-time systems
require to compute the worst-case waiting time. This waiting time is commonly named blocking
time and is added to issuing task’s WCET to form the Worst-Case Response Time (WCRT) of
the tasks [JP86]. The general term blocking time can be specialised depending on the context,
when a task pre-empts (blocks) an other one, it is known as the pre-emption delay ; when a
task is delayed du to interferences on the communication medium, the blocking time is known
as the contention delay.

Negrean et al. [NSE09] provide a method to compute the blocking time induced by con-
current tasks (pre-emption delay) in order to determine their response time. But some studies
might choose to reduce [HPP09], or even avoid [SM08] interferences on shared resources
leading to a decrease, or the removal, of the blocking time.

Aforementioned schedulers order accesses to the processor core. From Section 1.4, among
other arbiters, RR and TDMA arbiters order accesses to the shared bus. A contention analysis
is then defined to determine the worst case delay for a task to gain access to the resource (see
[FAQ+14] for a survey). Some shared resources may directly implement timing isolation mech-
anism between cores, such as TDMA buses, making contention analysis straightforward. Fur-
ther Chapters 3 and 4, in their respective related work sections, detail bus sharing mechanisms

32

1.7. Conclusion

and blocking time computations. Therefore, following policies from this section summarise key
concepts in other hardware-oriented (e.g. cache, SPM) and general resource sharing (e.g.
software objects).

On uniprocessor with priority-based scheduling, when a higher priority task pre-empts an-
other, the cache replacement policy can evict lines useful to lower priority tasks. Then the
resumed task can suffer from a blocking time to refill its evicted cache lines. In this case, the
blocking time corresponds to the Cache Related Pre-emption Delay (CRPD) [AB11; ADM11].
In multi-core architectures, the CRPD for shared caches results in an important pessimism.
Therefore, with cache partitioning, Suhendra et al. [SM08] fixes the CRPD to zero at the cost
of reduced performance with a smaller cache area per task. SPM-based architectures can suf-
fer from the same issue when a higher priority task evict useful data/code from the SPM for a
lower pre-empted task. Whitman et al. [WDA+12] port the CRPD to SPM with the Scratchpad
Pre-emption Delay (SRPD).

Other works on shared caches tend to minimise the interference. In [DLM13], the mapping
of tasks minimise interference on L2 cache. In [NHP17] the scheduler decides pairs of task
mapped on the same core contiguously scheduled that will maximise cache reuse. Hardy et
al. [HPP09] reduce interference on shared L2 cache by identifying at compile time, what basic
blocks are uniquely used. Then these blocks are not stored in the shared cache avoiding cache
pollution.

Dealing with shared software objects is not new, and there now exists several techniques
adapted from the single-core systems. Most of them are based on priority inheritance. In
particular Jarrett et al. [JWA15] apply priority inheritance to multi-cores and propose a resource
management protocol which bounds the access latency to a shared resource. For single-
core architecture Priority Ceiling Protocol (PCP) [SRL90] and Shared Resource Protocol (SRP)
[Bak91] are widely accepted as the most efficient technique to deal with software resource
accessed in mutual exclusion. It is known to avoid priority inversion and limit the blocking time.
The PCP policy defines a ceiling attached to each semaphore as the maximum priority among
all tasks that can possibly lock the semaphore. The SRP is similar to the PCP, but it has the
additional property that a task is never blocked once it starts executing. Both have analogous
methods targeting multi-core architectures, MPCP [Raj12] and MSRP [GLD01]. MPCP extends
the concept of blocking time to include also a remote blocking (when a job has to wait for the
execution of a task of any priority assigned to another processor). MSRP separates local and
global resources. For local resources, a classic SRP is used, while for a global resource, if the
resource is already locked by some other task on another processor, then the task performs a
busy wait (also called spin lock). A comparison of both MPCP and MSRP [GDL+03] showed
that no method outperforms the other. MSRP is easier to implement with a lower overhead
while MPCP has a higher schedulability bound.

1.7 Conclusion

This chapter presented a literature review on the different components required to design
real-time systems. The task model section described the software with different level of ex-
pressiveness and abstraction from the seminal periodic task model to multi-rate CSDF graphs.
Then, a classification of hardware platforms helped identifying predictable multi-core architec-

33

Hard real-time systems and multi-core platforms

tures properties. Moreover, the execution model followed by the inter-core communication com-
pleted design possibilities, by describing how tasks are executed and how they communicate
with each other. The consecration of these design choices lead to the estimation of the WCET.
Then, a review of mapping and scheduling algorithms was presented to determine on which
core and when to execute application tasks. Finally, hard real-time systems include software
and hardware resources to which only a single-task can access. Therefore, a review of different
methods and protocols presented how to integrate several sharing mechanisms. Next chapter
will present the context of this dissertation with respect to the aforementioned material.

34

CHAPTER 2

GENERIC STATIC SCHEDULING
FRAMEWORKS WITH WORST-CASE

CONTENTION

As shown in previous chapter, real-time systems need performance and predictable hard-
ware platforms. While multi-core architectures increase the computation power and so the
performance, they also add a dose of uncertainty which impacts the predictability. Therefore,
specific multi-core platforms, that also improve the predictability, generally enforce timing isola-
tion with their design choices, e.g. Kalray MPPA [DVP+14]. Moreover, SPM-based multi-core
architectures further improve the predictability [PP07; MB12], because the content of the SPM
is decided at compile time. Nowadays, it is more and more common to see NoC connecting
cores, but a bus remains a valid choice. A bus can be arbitrated with different policies where
the balance between performance (e.g. Round-Robin arbiters) and predictability (e.g. TDMA
arbiters) needs to be met. We believe that SPM-based multi-core architectures with a FAIR
Round-Robin arbitrated bus should remain of major concern in the future.

Some existing works on multi-core scheduling consider that the platform workload consists
of independent tasks, e.g. [BDN+16; CCR+17]. As parallel execution is the most promising
solution to improve performance, we envision that within only a few years from now, real-time
workloads will evolve toward parallel programs. The timing behaviour of such programs is
challenging to analyse because they consist of dependent tasks interacting through complex
synchronization/communication mechanisms. We believe that models offering a high-level view
of the behaviour of parallel programs allow a precise estimation of shared resource conflicts.
In this thesis, we assume parallel applications modelled as DAGs. This task model exhibits
both dependency and concurrency. In addition with AER execution model and SPM-based
architectures, memory accesses are explicit which increases the predictability of the whole
system.

Scheduling for multi-core platforms was the subject of many research works, surveyed in
[DB11]. We believe that static mapping of tasks to cores (partitioned scheduling) and non-
preemptive time-triggered scheduling on each core allow to have control on hardware resource
sharing, and thus allow to better estimate worst-case contention delays. This chapter intro-
duces two scheduling frameworks extracted from the state-of-art, and used as initial reference
for further scheduling methods in Chapter 3 and Chapter 4. The first one is an Integer Linear
Programming (ILP) formulation which gives an optimal solution. The second technique is a
heuristic algorithm which gives approximate results with a faster solving time. The included ILP
formulation gives a non ambiguous description of the problem under study, and also serves as
a baseline to evaluate the quality of the proposed heuristic technique. They both respond to
the same scheduling problem and both use

35

Generic static scheduling frameworks with worst-case contention

The proposed scheduling techniques are empirically evaluated. As expected, the ILP is
shown to not scale with large DAGs (scheduling is NP-hard [CGJ96]), thus requiring a heuris-
tic. To validate the quality of the heuristic, the schedule length generated by the heuristic is
compared to its equivalent baseline from the ILP formulation. Finally, the effect of schedule
parameters on schedule length is discussed such as the duration of one slot of the round-robin
bus.

The outline of this chapter is as follows: Section 2.1 presents the hardware platform and
the computation of communication costs between a core and the off-chip memory. Section 2.2
describes the task model and the execution model used on tasks. Section 2.2.1 details how
cores communicate with each other. Section 2.3 presents an example of the basic scheduling
problem before introducing both the ILP formulation and the heuristic frameworks. Then, Sec-
tion 2.4 gives some statistics and experiments picturing the efficiency of previous scheduling
techniques.

2.1 Basic predictable multi-core architectures

Multi-core architectures with a private ScratchPad Memory (SPM) per core are a very at-
tractive solution for executing time-critical embedded applications. They perfectly fit the need
for performance, with the computational power of multi-cores, and the need for predictability,
with the presence of SPMs. Examples of such architectures are the academic core Patmos
[SBH+15] or the Kalray MPPA [DVP+14] (with local memory banks configured as blocked).
Such a private memory allows, after having first fetched data/code from the main memory to
the SPM, to perform computations without any access to the shared bus. Figure 2.1 depicts an
abstraction of the multi-core architecture used all along this dissertation.

DRAM

SPMSPM SPM

SPM SPM

Bus

delay

Figure 2.1 – A multi-core architecture abstraction

The shared bus is arbitrated using a FAIR-RR policy to benefit from more predictability over
a classic Round-Robin [Ens77], and to avoid the loss of performance from TDMA arbiters.
Access requests are enqueued (one queue per core) and served in a round-robin fashion. A
maximum duration of Tslot is allocated to each core, to transfer Dslot data words to the external
memory (a data word needs Tslot/Dslot time units to be sent). If a core requires more time

36

2.1. Basic predictable multi-core architectures

than Tslot to send all data, then the data are split in chunks to be sent in several intervals of
length Tslot (see equation (2.1a)), plus some additional remaining time (see equation (2.1b)).
If a full Tslot duration is not needed to send some data, the arbiter processes the request from
the next core in the round. As an example in Figure 2.2, taking a Dslot of 1 data word, Tslot of
2 time units, and a core requesting a transfer request of 5 data words, results in two periods of
duration Tslot and a remaining time of Tslot/Dslot.

In the worst case for each chunk, we assume all cores active and requesting access to
the bus. This worst-case scenario can be improved (see Chapter 3). Then, a chunk will be
delayed by NbCores−1 pending chunks from the other cores (with NbCores being the number
of available cores), see equation (2.2). For each interfering core, the communication delay is
augmented with a waiting time. This waiting time refers to the accumulated time (for all chunks),
the core waits to access the shared bus to transmit a piece of data, equation (2.1c).

t

wait

1st chunk

2nd chunk
3rd chunk

delay

Figure 2.2 – Delay representation.
Configuration: Tslot = 2 time units, Dslot = 1 data-word, 3 cores
Request: 5 data words gives 3 chunks.
Each chunk is delayed by 2 interferences × Tslot

Overall, equation (2.1d) derives the worst latency, delay, to transmit some data with a round-
robin arbitration policy. This equation could be refined to account for DRAM access costs, as
done in [KBC+14] with a constant value. But the impact on the presented method is negligible.
Chapter 3 alleviates the worst-case contention in a contention-aware manner. And, Chapter 4
presents a contention-free version.

chunks = bdata/Dslotc (2.1a)

remainingT ime = (data mod Dslot) · (Tslot/Dslot) (2.1b)

waitingSlots = ddata/Dslote (2.1c)

delay = Tslot · waitingSlots · interf︸ ︷︷ ︸
Total waiting time

+Tslot · chunks+ remainingT ime︸ ︷︷ ︸
Total access time

(2.1d)

interf = NbCores− 1 (2.2)

37

Generic static scheduling frameworks with worst-case contention

The round-robin arbiter is predictable as the latency of a request can be statically estimated,
as long as the configuration of the arbiter (parameters Tslot and Dslot) and the amount of data
to be transferred (data) are known at design time [KHM+13].

2.2 Software Model

This work considers applications modelled as Directed Acyclic task Graphs (DAG), in which
nodes represent computations (tasks) and edges represent communications between tasks.
Nevertheless, this work supports multiple DAGs with identical periods as it is. With different
periods, the following methods are applicable at the job level on the hyper-period. A task graph
G is a pair (V,E) where the vertices in V represent the tasks of the application. The set of edges
E represents the data dependencies. An edge is present when a task is causally dependent
on another, meaning the target of the edge needs the source to be completed prior to run. An
example of a simple task graph is presented by Figure 2.3 with labelled edges corresponding
to number of exchanged data words.

D J

1

E

2

2

1

3

5A

B

C

A

F

G

H

2

2

2

1
1

Figure 2.3 – Task graph example

Each task is then divided in three phases (or sub-tasks) according to the Acquire-Execute-
Release semantics (AER), as first defined in [DFG+14]. The acquire phase reads/receives
the mandatory code and/or data from main memory to SPM, such that the execute phase
can proceed without accessing the bus. Finally, the release phase writes/sends the resulting
data back to the main memory. In the rest of this document, read and write will refer to the
acquire/release communication phases of tasks respectively.

The obvious interest of the AER semantics is to isolate the sub-tasks that use the bus.
Therefore, contention analysis can focus only on these sub-tasks. For the sake of simplicity, this
chapter considers that the entire code and data fit in the off-chip memory, and there is always
enough space left in SPMs for loaded and produced data. Since the code in our experimental
evaluation, is generally small and likely to be reused along the execution of the application,
for simplicity reasons we assume that the code is preloaded in the SPM at startup. However,
enabling code prefetching could be easily done, by including the size of the code of a task in
the amount of data to be fetched by its read phase.

38

2.3. Scheduling framework

A task i is defined by a tuple < τ ri , τ
e
i , τ

w
i > to represent its read, execute, and write phases.

An edge is defined by a tuple e =< τws , τ
r
t , Ds,t > where τws is the write phase of the source

task s, τ rt is the read phase of the target task t. Ds,t is the amount of data exchanged between
s and t.

The WCET of the execute phase, noted Ci, can be estimated in isolation from the other
tasks considering a single-core architecture, because there is no access to the main memory
(all the required data and code have been loaded into the SPM before the task’s execution).
The communication delay of the read and write phases (respectively noted delayri and delaywi)
depend on several factors: amount of data to be transferred, number of potential concurrent
accesses to the bus. For this initial chapter, a worst-case contention is assumed. Worst-case
contention assumes that all cores are requesting the bus at the same time instant. This will
represent a baseline for further improvements and is quite generic in the literature.

2.2.1 Inter-core communication

In this chapter, communications are considered blocking and indivisible. The sender core
initiates a memory request, then waits until the request is fully complete (blocking communica-
tions), i.e. the data is transferred from/to the external memory. There is no attempt to reuse
processor time during a communication by allocating the processor to another task (indivisi-
ble communication). Execution on the sending computing core is stalled until communication
completion.

All communications go to the main memory, the read phase fetches data from the main
memory to the SPM and the write phase sends data from the main memory to the SPM.

The conjunction of blocking communication and all communications via external memory
constraint maximises the waiting time spent to communicate data between tasks. Hence, it
represents the worst-case behaviour regarding the impact of communications on the schedule
length.

While these assumptions are met in Chapter 3, Chapter 4 relaxes them with the presence of
a DMA engine and a dual-ported SPM in the architecture. Both hardware modifications enable
non-blocking communications ; i.e. the core is not stalled.

2.3 Scheduling framework

With multi-core architectures, static scheduling algorithms aim at finding a mapping (where
to execute tasks), and a schedule per core (when to fire tasks). Hard real-time systems need
strong guarantees on the timing behaviour. Such guarantees are offered by construction with
static off-line scheduling algorithms, as opposed to dynamic scheduling policies which require
a schedulability analysis. When a static scheduler finds a valid schedule, as long as the WCET
are safe, no deadline misses is guaranteed.

The proposed scheduling policy co-schedules and maps both computation and communica-
tion phases. A one-step strategy avoids a source of pessimism induced by a multi-step method,
as in [TPG+14] where mapping and scheduling are performed in separate processes.

This section presents the scheduling framework used all along this document. Both an ILP
formulation and a heuristic targeting the same problem are detailed. They are further improved

39

Generic static scheduling frameworks with worst-case contention

in next chapters (Chapter 3 for contention-aware schedules, Chapter 4 for a contention-free
with limited-size SPM). The main outcome of both techniques is a static mapping/scheduling
for one single application represented by a DAG. According to the terminology given in [DB11],
the proposed scheduling techniques are partitioned, time-triggered and non-pre-emptive and
operate at the task level.

The scheduling framework, from this chapter, is not a contribution on its own. It corresponds
to an aggregation of principles extracted from the literature. Moreover, in this dissertation the
following constraints and algorithms are used as baseline and are later refined according to the
solved problem. In this case, they represent a simple mapper+scheduler generating schedules
as presented in the following example.

2.3.1 Example

Table 2.1 – WCET values used for the task graph example in Figure 2.3

Task A B C D E F G H J
WCET in time units 5 6 10 15 15 15 15 10 5

P1
A

B

D

E

G

P2

C

H

F

J

0 10 20 30 40 50 60 70

Bus usage

Bus usage

9
Aw

7
Ew

8
Gr

17
Gw

7

Dr

17

Jr

27

Hw

8

Hr

7

Fw

18

Fr

9

Cw

Bw

9 7

Er

Cr

8
80 90 100 110

P3
Bus usage

120

Figure 2.4 – Resulting schedule for task-graph from Figure 2.3 with a worst-case contention
policy targeting a tri-core architecture equivalent to Figure 2.1. Overall makespan is 122 time
units.

Figure 2.4 presents the results of a static scheduler using following ILP formulation. Inputs
include the task graph from Figure 2.3 with WCET estimate values from Table 2.1. To compute
communication delays, a worst-case contention policy is applied targeting a tri-core architecture
equivalent to Figure 2.1. In Figure 2.4, the X-axis represents the time in time units starting at
time 0 to the overall makespan of the schedule, here 122 time units. The Y-axis corresponds to
processors timeline and bus usage timeline. Notice that there is only one bus on the targeted
architecture, but three timelines on the resulting figure are clearer.

Three grey levels identify each phase of each task : white boxes for read phases, light
grey boxes for exec phases, and dark grey boxes for write phases. Exec phases are placed
on a processor core timeline, while communication phases are placed under on a bus usage
timeline. Read/Write phases include both waiting time and effective bus access time. All three
phases are contiguously mapped on the schedule (a phase starts right after its preceding one)
and ordered according to the AER execution model.

40

2.3. Scheduling framework

On a processor’s timeline, no execution phases overlap in time. The execution order is
determined by the scheduler according to dependencies found in the graph. Thus there exist
other solutions than this one – e.g. tasks G and D could be executed in reverse order – but no
other resulting schedules can have a shorter overall makespan which is 122 time units here.

Fusing the two bus usage timelines results with between 0 and 3 communication phases
activated at the same moment in time. But communication phases do not access the bus in
parallel, they are interleaved according to a mutual exclusive principle of buses arbitrated with
a FAIR-RR policy. The worst-case contention effectively arises when 3 communication phases
are effectively active at the same time ; e.g. write phases Cr, Er, and Dr. Numbers under
each communication phase correspond to delays to transmit the data from the SPM to the
main memory. Equation (2.1d), introduced in Section 2.1, computes this delay using a worst-
case concurrency (equation (2.2)) and Tslot = 3, Dslot = 3 ; e.g. write phase Gw transmit 5
tokens, delaywG = 3 · 2 · (3− 1)︸ ︷︷ ︸

Total waiting time

+ 3 · 1 + 2︸ ︷︷ ︸
Total access time

= 17 time units.

In Figure 2.4, there is no overlapping in time between a bus usage and an exec phase on
the same core, therefore enforcing blocking communications.

2.3.2 Integer Linear Programming (ILP) formulation

An Integer Linear Programming (ILP) formulation consists of a set of integer variables, a
set of constraints and an objective function. Constraints describe the problem to be solved in
the form of linear inequalities and equalities 1. Solving an ILP problem consists in finding a
valuation for each variable satisfying all constraints with the goal of minimising/maximising the
objective function. When scheduling and mapping a task graph on a multi-core platform, the
objective is to minimise the overall schedule makespan.

Table 2.2 summarises the notations and variables used in this ILP formulation. Uppercase
elements correspond to constants, lowercase elements are variables of the ILP formulation.
For a concise presentation of constraints, the two logical operators ∨,∧ are directly used in
the text of constraints. These operators can be transformed into linear constraints in order to
properly use ILP solvers using simple transformation rules from [BD07], and given in Table 2.3.

Big-M notation The technique named nullification allows to activate or withdraw a constraint
depending on the value of a binary variable. To apply a nullification on a constraint within an
ILP system, a portable choice lies in the big-M notation [GNS09] 2.

As an example, if a constraint x ≤ z must be satisfied to validate the model only if a binary
variable y is equal to 1 then the inequalities is written: x ≤ z +M · (1 − y). If y = 1 then
M · (1 − 1) = 0 and x ≤ z + 0 holds. Otherwise y = 0 and x ≤ z +M still holds ifM = ∞
The value ofM is very important as it must be greater than any possible value in the model.
But computers do not code∞, so, one could use the biggest integer available on the hardware
running the solver.

1. An equality can be defined as 2 inequalities, but lowering the verbosity is always appreciable
2. In the commercial CPLEX solver from IBM, the indicator feature allows to activate a constraint depending on

a binary variable. But this feature is not available on other solver such as LP solve or Gurobi. Its usage is therefore
withdrawn in this document for genericity purposes.

41

Generic static scheduling frameworks with worst-case contention

Table 2.2 – Notations & ILP variables

S
et

s T the set of tasks
P the set of processors/cores

Fu
nc

tio
ns predecessors(i) returns the set of direct predecessors of task i

successors(i) returns the set of direct successors of task i

C
on

st
an

ts

Ci task i execute phase’s WCET computed in isolation as stated in Section 2.2

DELAY r
i task i read, write phases’ WCET from Equations (2.1d) and (2.2)

DELAY w
i

In
t.

va
r.s Θ schedule makespan

ρri , ρ
e
i , ρ

w
i start times of read, execute, and write phases of task i

B
in

.
va

r.s

pi,c = 1 task i is mapped on core c
mi,j = 1 tasks i & j are mapped on the same core
aeei,j= 1 represents the causality between task i and task j, in the sense ρri ≤ ρrj

The precision of concerned type of phase, ee for two execute phases,
is used here to remain consistent with ILP formulation from next chapters

amee
i,j = 1 same as aeei,j but on the same core

Table 2.3 – Transformations of ∨,∧ to linear inequalities where a, b, c are binary variables

c = a ∧ b c+ 1 ≥ a+ b c ≤ a c ≤ b
c = a ∨ b c ≤ a+ b c ≥ a c ≥ b

In multi-core scheduling, the makespan of a sequential schedule on one core bounds the
multi-core overall schedule makespan – i.e. a multi-core schedule with a higher response time
than on a single-core is not relevant. The sequential schedule makespan is a good candidate
value for the big-M constant. Equation (2.3) then computes the sum of WCETs and delays,
which is the worst scenario that can arise.

M =
∑
i∈T

(Ci +DELAY r
i +DELAY w

i) (2.3)

Objective function The goal is to minimise the makespan of the schedule, that is minimising
the end time of the last scheduled task. The objective function, given in equation (2.4a), is to
minimise the makespan Θ. Equation (2.4b) constrains the completion time of all tasks (starting
of write phase, ρwi , plus its WCET, DELAY w

i) to be inferior or equal to the schedule makespan.

minimize Θ (2.4a)

∀i ∈ T ; ρwi +DELAY w
i ≤ Θ (2.4b)

42

2.3. Scheduling framework

Problem constraints Some basic rules of a valid schedule are expressed in the following
equations. Equation (2.5a) ensures the unicity of a task mapping. Equation (2.5b) indicates
if two tasks are mapped on the same core. Notice that Equation (2.5b) doesn’t need to be
added for all tasks, but an optimisation on the number of constraints would be to consider that
mi,j = mj,i. This optimisation will then decrease the solving time without sacrificing the quality
of results.

Variable aeei,j represents the causality of the two tasks i, and j in the sense τ ei is scheduled
before τ ej , thus Equation (2.5c) enforces a mutual exclusion in the causal order of phases. One
of the aeei,j , a

ee
j,i must be equal to 1, but both can not be equal to 1. In the case of τ ei = τ ej ,

both cases aeei,j = 1 , or aeej,i = 1 are possible but the solver will have to chose one depending
on the remaining state of the system. However, if such a case (τ ei = τ ej) should arise in a
multi-core environment, it means that tasks i and j are mapped on different cores, and the
aware reader can notice that in the following ILP formulation, variables aeei,j /a

ee
j,i incidences are

therefore limited.
Finally Equations (2.5d) unifies Equations (2.5b) and (2.5c) to order exec phases only on

the same core.

∀i ∈ T ;
∑
c∈P

pi,c = 1 (2.5a)

∀(i, j) ∈ T × T ; i 6= j,

mi,j =
∑
c∈P

(pi,c ∧ pj,c) (2.5b)

∀(i, j) ∈ T × T ; i 6= j, aeei,j + aeej,i = 1 (2.5c)

∀(i, j) ∈ T × T ; i 6= j, amee
i,j = aeei,j ∧mi,j (2.5d)

Read-execute-write semantics constraints Equations (2.6a) and (2.6b) constrain the order
of all phases of a task to be read phase, then exec phase, then write phase. Equations (2.6a)
and (2.6b) impose all three phases to execute contiguously without any delay between them.
The start time of the execute phase of task i (ρei) is immediately after the completion of the
read phase (start of read phase ρri + communication cost DELAY r

i). Similarly, the write phase
starts (ρwi) right after the end of the execute phase (start of read phase ρei + WCET Ci).

∀i ∈ T, ρei = ρri +DELAY r
i (2.6a)

∀i ∈ T, ρwi = ρei + Ci (2.6b)

43

Generic static scheduling frameworks with worst-case contention

Absence of overlapping on the same core Equation (2.7) forbids the overlapping of two
tasks when mapped on the same core by forcing one to execute after the other. When i and j
are mapped on the same core, and task i is meant to be scheduled before task j, amee

i,j = 1.
Then read phase of j (ρrj) must start after the write phase of i completes (ρwi + DELAY w

i). If
not mapped on the same core, or tasks are scheduled in reverse order, then amee

i,j = 0 and the
constraint holds with the help of theM notation.

∀i, j ∈ T × T ; i 6= j,

ρwi +DELAY w
i ≤ ρrj +M (1− amee

i,j)
(2.7)

Data dependencies in the task graph Equation (2.8) enforces data dependencies by con-
straining all tasks to start after the completion of all their respective predecessors. For a read
phase (ρri) its predecessor is the write phase (ρwj +DELAY w

j) of the task producing the corre-
sponding data (j ∈ predecessors(i)).

∀i ∈ T, ∀j ∈ predecessors(i); ρwj +DELAY w
j ≤ ρri (2.8)

Computing communication phases interference This chapter assumes a worst-case con-
tention model, equation (2.1d) allows to compute the communication cost of each read and
write phases statically. Thus, DELAY χ

i with χ ∈ {r, w} and i ∈ T is a constant in the ILP
formulation.

2.3.3 Forward List Scheduling algorithm

Due to the NP-hardness [CGJ96] of the scheduling problem, the afore-described ILP for-
mulation does not scale with large use cases. A heuristic algorithm helps support them at
the cost of a possible over-approximation. In the late 60’s, Graham [Gra66] proposed the List
Scheduling (LS) algorithm to minimise the overall schedule makespan of a set of jobs on an ho-
mogenous parallel machine. This greedy approximation algorithm was later shown to perform
quite well [CSS98] in terms of quality of results (over-approximation compared to the optimal is
small) and with a much lower solving time.

LS algorithms first orders input elements, then add them one by one in the schedule without
backtracking. They are classified in two types, forward or backward. While the former starts a
new task as soon as possible, the later works from the deadline of a job and plans for just-in-
time completion order. This dissertation presents a Forward List Scheduling (FLS) method in
order to minimise the schedule length.

This chapter considers two sorting algorithms, all respecting dependencies. Scheduled
elements are sorted with classic vanilla algorithms to walk-through the graph: i) Depth First
Search (DFS), and ii) Breath First Search (BFS). For all two sorting solutions, we used the
element memory footprint as tie breaking rule (larger footprint to be scheduled first). But, we
could not find any sorting algorithm that outperforms the other one, so we generate two sched-
ules each resulting from one sorting algorithm, and we select the best one as the heuristic’s
solution. Chapter 4 briefly discusses the importance of different algorithms in its experiment
section (Section 4.6.4).

44

2.3. Scheduling framework

ALGORITHM 2.3.1: Forward list scheduling
Input : A task graph G = (T,E) and a set of processors P
Output : A schedule

1 Function ListSchedule(G = (T,E), P)
2 Elist← BuildListElement(G)
3 Qready← TopologicalSortNode(Elist)
4 Qdone← ∅
5 schedule← ∅
6 while t ∈ Qready do
7 Qready← Qready \{t}
8 Qdone← Qdone ∪{t}

/* tmpSched contains the best schedule for the current task */
9 tmpSched← ∅ with makespan =∞

10 foreach p ∈ P do
11 copy ← schedule
12 map t on p in copy
13 ScheduleElement(copy,Qdone, t, p)
14 tmpSched← minmakespan(tmpSched, copy)
15 schedule← tmpSched

16 return schedule

ALGORITHM 2.3.2: Build list scheduled element
Input : A task graph G = (T,E)
Output : A list

1 Function BuildListElement(G = (T,E))
2 return {τe

i |i ∈ T}

The FLS algorithm is sketched in Algorithm 2.3.1. It uses the task graph as input, extracts
scheduled elements (line 2), sorts them to create a list (line 3), and then a loop iterates on each
element while there exists one to schedule (lines 6-15). The algorithm schedules an element
on a core (line 13), and then selects the core where the mapping+scheduling minimises the
overall makespan (line 14).

In this first version, scheduled elements include the whole task at once which is summarised
in the exec phase (Algorithm 2.3.2) for clarity regarding algorithms in following chapters. Be-
sides, only exec phases need to be mapped on a core, communication phases de facto initiates
from this same core and map on the unique bus.

Scheduling an element Algorithm 2.3.3 sketches the method to determine the start time of
the considered element (here all the three phases at once). This heuristic uses an As Soon
As Possible (ASAP) strategy when scheduling an element. It tries to schedule the element as
early as possible on every processor.

First, each element must start after all their causal predecessors (line 2). Then, lines 3-7
enforces that no tasks overlap their execution/communication on the same core at the same
time. Finally, lines 8 and 9 fulfil the AER requirements.

45

Generic static scheduling frameworks with worst-case contention

ALGORITHM 2.3.3: Schedule an element
Input : the list of scheduled element, the current element to schedule, the current core
Output : The input schedule modified with the newly added element

1 Function ScheduleElement(Qdone, cur_elt, cur_p)
2 ρr

cur_elt ← maxe∈pred(cur_elt)(ρw
e +DELAY w

e)
3 siblings← {e ∈ Qdone|e is mapped on cur_p}
4 sort({(e, e′) ∈ siblings|e 6= e′ ∧ ρr

e < ρr
e′})

5 foreach e ∈ siblings do
6 if e and cur_elt are active at the same time then

/* postpone the start of the current element */
7 ρr

cur_elt ← ρw
e +DELAY w

e

8 ρe
cur_elt ← ρr

cur_elt +DELAY r
cur_elt

9 ρw
cur_elt ← ρe

cur_elt +WCETcur_elt

2.4 Experiments

Experiments were conducted on synthetic task graphs generated using the Task Graph For
Free (TGFF) [DRW98] graph generator. Due to the intrinsic complexity of solving the scheduling
problem using ILP, we need for small task graphs such that the ILP is solved in reasonable time.
TGFF is used when there is a need to generate a large number of task graphs with a wide range
of topologies. It is first used to evaluate the quality of the heuristic against the ILP formulation.
This validation step shows the over-approximation induced by the heuristic is acceptable. The
second experiment shows the impact of the Tslot hardware property on the schedule.

We generated two sets of task graphs: one with relatively small task graphs (referred to
as STG), and another with bigger task graphs (referred to as BTG). With the latest version of
the TGFF task generation software, the generator builds task graphs with chains of tasks with
different lengths and widths, including both fork-join graphs and more evolved structures (e.g.
multi-DAGs).

The resulting parameters of both sets are presented in Table 2.4. The table includes for
both sets the number of task graphs, their number of tasks, the width of the task graph, the
range of WCET values for each task 3 and the range of amount of exchanged data in bytes
between pairs of tasks. The TGFF parameters for STG (average and indicator of variability)
are set in such a way that the average values for task WCETs and volume of data exchanged
between task pairs correspond to the analogous average values from real applications found in
the STR2RTS benchmarks suite [RP17].

All reported experiments have been conducted on several nodes from an heterogeneous
computing grid with 138 computing nodes (1700 cores). In all experiments Tslot is explicit, and
a transfer rate of one data word (8 bits) per time unit is used.

3. The reader may notice that the WCET average value is not perfectly in the middle of the min and max values.
This is due to the generation of random numbers in TGFF (pseudo-random, not perfectly random) combined to the
limited number of values generated.

46

2.4. Experiments

Table 2.4 – Task-graph parameters for synthetic task-graphs

#T
as

k-
gr

ap
hs

#T
as

ks

M
ax

.
w

id
th

W
C

E
T

E
xc

ha
ng

ed
da

ta

<min,max,avg>
STG 50 5, 69, 22 3, 17, 8 [5; 6000[[0; 192]
BTG 1000 18, 447, 150 2, 23, 9 [5; 6000[[0; 200]

2.4.1 Scalability of the ILP formulation

Solving an ILP problem for a mapping/scheduling problem on multi-cores is known to be
NP-hard [CGJ96]. Thus, the running time of the ILP formulation is expected to explode as the
number of tasks grows. To evaluate the scalability of the ILP formulation with the number of
tasks, a large number of different configurations is needed, explaining why we used synthetic
task graphs for the evaluation. For each task graph in set STG we vary the number of cores
in {2, 4, 8, 12} values and vary Tslot in interval [1; 10]. With those varying parameters, the total
number of scheduling problems to solve is 50 · 4 · 10 = 2000. The ILP solver used is CPLEX
v12.7.1 4 with a timeout of 11 hours.

Figure 2.5 – Scalability of ILP formulation (synthetic task graphs / STG)

Figure 2.5 draws the evolution of the solving time depending on the number of tasks per
graph. The solving time corresponds to the average value among graphs with the same number
of tasks. As expected, when the number of tasks grows, the average solving time explodes,
thus motivating the need for a heuristic that produces schedules much faster. As noticeable
from Figure 2.5, the average solving time does not reach the timeout of 11h, because for some
test cases the solver proves the infeasibility and stops quickly. Some other test cases include
few linear chains of tasks and the solver quickly finds an optimal solution and stops. But still,

4. https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

47

Generic static scheduling frameworks with worst-case contention

the number of tasks is of major influence regarding the solving time.

2.4.2 Quality of the heuristic compared to the ILP

The following experiments aim at estimating the gap between makespans of schedules
generated by the heuristic (see Section 2.3.3) opposed to solutions found by the ILP formulation
(see Section 2.3.2). The gap is expected be small. To perform the experiments we used the 50
task-graphs from the STG task set with the same parameters’ variation as previously: number
of cores ∈ {2, 4, 8, 12} and Tslot ∈ [1; 10]. The heuristic is implemented in C++ and CPLEX was
configured with a timeout of 11 hours.

Table 2.5 – Degradation of the heuristic compared with the ILP (synthetic task graphs / STG)

% of exact results degradation
(ILP only) <min,max,avg> %

73% 0%, 22%, 2%

Table 2.5 summarises the results. The first column of Table 2.5 presents the percentage
of exact results the ILP solver is able to find in the granted time. We only refer to the exact
solutions for the comparison, as the feasible ones (i.e not exact) might bias the conclusion
on the quality of the heuristic compared to the ILP. Therefore, remaining 27% include feasible
solutions as well as problems where timeout was reached (neither optimal solution found, nor
proved infeasible). The next column presents the minimum, maximum and average degradation
in percent, computed using makespans with equation (2.9).

degradation = heuristic− ILP
ILP

(2.9)

[0
; 1

[

[1
; 2

[

[2
; 3

[

[3
; 4

[

[4
; 5

[

[5
; 6

[

[6
; 7

[

[7
; 8

[

[8
; 1

1
[

[1
1

; 1
2

[

[1
2

; 1
3

[

[1
3

; 1
4

[

[1
4

; 1
7

[

[1
7

; 1
8

[

1

10

100

1000
988

52
80 71

33

56
69

31

10 10 10

20

% range of degradation

N
u

m
b

e
r

o
f g

ra
p

h
s

Figure 2.6 – Distribution of the degradation of the heuristic against the ILP formulation using
STG task set. (logarithmic scale)

48

2.4. Experiments

The average degradation is low, which means the heuristic has acceptable quality. A deeper
analysis of the distribution of degradation, Figure 2.6, shows that 95% of the heuristic schedules
are less than 10% worse than the ILP formulation solutions. We also observed a schedule
generation time far much lower for the heuristic than the ILP solving time on the STG task set
(maximum 0.5 second, average 0.08 second).

The influence of task sorting has a significant impact on the heuristic output. We choose
a topological order with random tie breaking as stated in Section 2.3.3. These sorting algo-
rithms explain the under-performance of 22% on the worst-case. No comparative study on
sorting algorithms is included here, this is done in Chapter 4 with the addition of a third sorting
technique.

2.4.3 Impact of Tslot on the schedule

Finally, with the heuristic, we studied the influence of the duration Tslot on the overall
makespan, assuming the overhead negligible when switching between slots. We choose to
remain on synthetic task graphs to benefit from a wider range of different test cases. Here
the BTG task set is employed. For each graph, we generated three versions of the same
topology but with different amounts of exchanged data between tasks. First case concerns
few exchanged data [0; 20], then reasonable amount of data [20; 100] and large amount of data
[100; 200]. With duration Tslot in the range [1; 40], it covers all scenarios to exchange data in one
or several chunks.

Figure 2.7 – Average makespan when varying Tslot (synthetic task graphs / BTG)

Results are presented in Figure 2.7 where the three curves correspond to the average
makespan of each category over the value of Tslot. We observe that Tslot has a very little
impact on schedule makespan. The exposed results confirm that it is a better choice to keep
this Tslot small to reduce the waiting time between each slot even if there are several chunks.
This allows small packets of data to be handled faster when in competition with bigger packets.

49

Generic static scheduling frameworks with worst-case contention

2.5 Conclusion

This chapter presented the design choice for the remaining chapters of this document. First
the hardware design introduces the SPM-based multi-core architecture with cores connected
through a bus arbitrated by a FAIR Round-Robin policy. We believe that these choices are valid
as existing architectures are available for research studies with, for example, the academic core
Patmos [SSP+11] and the commercial platform Kalray MPPA [DVP+14].

The software design includes parallel applications represented by DAGs. In conjunction
with an AER execution model, memory accesses are isolated from computation in different
phases. This separation allows to compute the WCET of computation phase in isolation as the
computing core do not suffer from interferences from other cores. Timing isolation of bus ac-
cesses is, therefore, enforced without sacrificing performance and expressiveness. Moreover,
the complexity of analysing real-time systems is decreased, while the accuracy of results is
increased.

Initial contention model depicts a worst-case scenario where all contending cores try to
access the shared resource – i.e. the bus – at the same time. Even if very pessimistic, this
represents a baseline open for improvements with contention awareness from Chapter 3. In
addition to the communication model, blocking bus accesses represent a worst-case scenario
which is improved in Chapter 4.

Then, two scheduling techniques allow to build static schedules that are partitioned, time-
triggered and non-pre-emptive. First, an ILP clearly states the problem under study. And by
generating optimal schedules, ILP solvers results serve as baseline for approximate algorithm.
Second, a heuristic algorithm based on list scheduling generates approximate schedules with
the same general constraints than the ILP formulation.

Empirical evaluation showed that solving scheduling problem with exact method, ILP formu-
lation, does not scale with large problems, as expected. For larger test cases an approximate
method is required with a heuristic algorithm. Due to the intrinsic over-approximation of heuris-
tic methods based on list scheduling, the quality of their results is compared with an exact
method. Experiments revealed that the degradation of heuristic results does not exceed 22%
with an acceptable average value of 2%.

Then, an empirical evaluation showed that the Tslot parameter has negligible impact over
the schedule length.

The code of this scheduling framework is available at https://gitlab.inria.fr/brouxel/
methane.

Next chapter relaxes the assumption on the contention scenario used in this chapter. It
details how to compute the effective amount of interference at schedule time.

50

https://gitlab.inria.fr/brouxel/methane
https://gitlab.inria.fr/brouxel/methane

CHAPTER 3

COMPUTING THE PRECISE CONTENTION
TO BUILD CONTENTION-AWARE

SCHEDULES

This chapter marks the first main contribution of this dissertation: a mapping/scheduling
strategy featuring bus contention awareness. Again, this method applies to SPM-based multi-
core platforms where a round-robin bus connects cores and off-chip memory, as described in
Section 2.1. The scheduling techniques, detailed in Chapter 2, employed a worst-case con-
tention, which was a safe bound (but pessimistic) for the access latency: NbCores - 1 contend-
ing tasks can access the bus (with NbCores as the number of available cores). The scheduling
method in this chapter takes into consideration the application structure and information on the
schedule under construction. The scheduler is then able to precisely estimate the effective
contention by counting the worst-case degree of interference, which increases the accuracy of
worst-case bus access latencies.

Like in Chapter 2, the proposed scheduling strategy generates a non pre-emptive time-
triggered partitioned schedule with blocking communications. Again, both an ILP formulation
and a heuristic algorithm model the scheduling problem, and all elements of the context remains
identical to this same previous chapter – i.e. hardware, software, execution and communication
models, and SPM assumptions.

The proposed scheduling techniques are evaluated experimentally. The schedule’s length
generated by the heuristic algorithm is compared to its equivalent baseline scheduling tech-
nique, from Chapter 2, accounting for the worst case contention. The experimental evaluation
also studies the interest of allowing concurrent bus accesses as compared to related work
where concurrent accesses are systematically avoided in the generated schedule. The exper-
imental evaluation uses a subset of the STR2RTS streaming benchmarks [RP17], as well as
synthetic task graphs using the TGFF graph generator [DRW98].

The contributions of this chapter are threefold:

i) The first proposed novel approach derives precise bounds on worst-contention on a
shared round-robin bus. Compared to state-of-the-art, this method employs knowledge
of the application structure (task graph) and mapping decisions to determine tasks that
effectively execute in parallel. Therefore, the worst-case bus access delays are tightened
with the accurate amount of interferences, compared to a worst-contention scenario.

ii) Second, two scheduling techniques, an ILP formulation and a heuristic algorithm, gener-
ate time-triggered partitioned schedules. They augment the scheduling frameworks from
Chapter 2. The novelty with respect to existing scheduling techniques lies on the ability
of the scheduler to select the best strategy regarding concurrent accesses to the shared

51

Computing the precise contention to build contention-aware schedules

bus (allow to forbid concurrency) to minimise the overall makespan of the schedule.

iii) Third, empirical experiments evaluate the benefit of precise estimation of contentions as
compared to the baseline estimation from previous Chapter 2. Moreover, we discuss
the interest of allowing concurrency (and thus interference) between tasks as compared
to state-of-the-art techniques such as [BDN+16] where contentions are systematically
avoided.

The method presented in this chapter has been published in [RDP17]. Nevertheless some
differences exist between this chapter and the aforementioned publication. In the paper, the
scheduler implements an optimisation regarding the mapping of tasks which stands at follows:
considering two tasks exchanging data, if they are mapped on the same core, then these data
are not written then read to/from the main memory but remain in the SPM. This optimisation
saves some time by not creating traffic over the bus. Motivations to not include it in this disser-
tation are twofold: i) complexity in solving time, ii) and coherency. The contribution in following
Chapter 4 does not include this optimisation, because, with non-blocking communications, this
optimisation is too costly in term of solving time. This chapter, therefore, does not include it as
a matter of coherency. Nonetheless, conclusions remain identical as in the publication, thus
strengthening the proposed contribution.

This chapter is organised as follows: Section 3.1 presents an example motivating and briefly
explaining the detailed method in Section 3.2. Then Section 3.3 applies this method to capture
the effective contention within two scheduling techniques. Section 3.4 validates the approxi-
mate algorithm against the ILP formulation before showing the benefit of using the contention-
aware method. Finally, Section 3.5 compares this study again the literature before concluding
in Section 3.6.

3.1 Motivating example

D J

1

E

2

2

1

3

5A

B

C

A

F

G

H

2

2

2

1
1

Figure 3.1 – Running task graph example, identical to Figure 2.3

Figures 3.1 and 3.2a are identical to Figure 2.3 and Figure 2.4 respectively, and act as a
reminder from Chapter 2. Figure 3.1 represents an application task-graph, while Figure 3.2a
shows the resulting schedule of this task-graph on a tri-core with a worst-contention model as
in Section 2.4 with identical WCET estimates from Table 2.1.

Figure 3.2b depicts the resulting schedule of the following method with contention-awareness.
This schedule is generated using subsequent ILP formulation. Same as previously, the X-axis
is time, the Y-axis is cores and bus timelines, white/grey/dark boxes display read/exec/write

52

3.1. Motivating example

phases respectively with a number under communication phases indicating the communication
delay.

P1
A

B

D

E

G

P2

C

H

F

J

0 10 20 30 40 50 60 70

Bus usage

Bus usage

9
Aw

7
Ew

8
Gr

17
Gw

7

Dr

17

Jr

27

Hw

8

Hr

7

Fw

18

Fr

9

Cw

Bw

9 7

Er

Cr

8
80 90 100 110

P3
Bus usage

120

(a) Resulting schedule with a worst-contention scenario targeting – overall makespan is 122 time units.

P1
A

B

D

E

G

P2

C

H

F

J

0 10 20 30 40 50 60 70

Bus usage

Bus usage

6
Aw

4
Ew

2
Gr

17
Gw

4
Dr

5

Jr

9

5

Hr

4

Fw

12

Fr

6

Cw

Bw

9 4

Er

Cr

8
80 90

P3
Bus usage

Hw

(b) Resulting schedule with a contention-aware contention scenario – overall makespan is 89 time units.

Figure 3.2 – Motivation example

With the help of the application structure and the mapping decision, the scheduler computed
a tighter worst-case communication delay. For example, write phase of Ew interferes only with
one other communication phase, i.e. write phase of C. Therefore, the worst-case delay for
Ew reduces to 4 time units instead of 7. Same considerations apply for most communication
phases except for Bw, Cr, and Gw that still conflict with two other phases (worst-case situation
from Figure 3.2a).

In addition, assuming that the application executes on its own on the architecture, then no
parallel requests occur at the time of the read phase of task J because of the structure of the
application. Similarly on the same example, the write phase of task A can only be delayed by
the write phase of task B (assuming an optimal schedule with at least three cores).

It is also interesting to note that the three read phases of tasks F,G,H have been delayed.
In this case, the solver preferred to postpone the activation of these two tasks to avoid adding
interferences. This results with very shorter worst-case communication delay for F r, Gr and
Hr.

Finally, contention-aware schedule makespan is 89 time units, while worst-contention sched-
ule makespan was 122 time units. This represents an improvement of 37%.

53

Computing the precise contention to build contention-aware schedules

3.2 Improving worst-case communication cost

The communication cost for a communication phase depends on how much interference this
phase suffers from. The interference is due to tasks running in parallel on the other cores. The
number of such tasks depends on scheduling decisions (task placement in time and space).
Considering a task i, only tasks that are assigned to a different core may interfere with i,
and only tasks that execute within a time window overlapping with that of i actually interfere.
This section presents, using a top-down approach, how a precise estimation of communication
costs is obtained. For the whole document, concurrent tasks is used for tasks with no data
dependencies that may be executed in parallel, while parallel tasks is used for tasks that are
effectively scheduled to run in overlapping time windows.

Accounting for the actual concurrency in applications Equation (2.1d) (Chapter 2, Page
37) statically computes communication costs assuming all cores (equation (2.2)) execute a
communicating phase and thus add a waiting time to every memory access, which is pes-
simistic. A first solution to reduce this pessimism lies in exploiting knowledge about the appli-
cation itself to determine the amount of concurrent tasks.

A pair of tasks is concurrent if they do not have data dependencies between each other, i.e.
tasks that may execute in parallel. As an example, in Figure 3.1, tasks F and G are concurrent
and task G and task A are not concurrent. Determining if two tasks are concurrent is usually
NP-complete [Tay83]. However, with the DAG task model properties, in particular the presence
of statically-paired communication points, evaluation of concurrency is polynomial. Two tasks
are concurrent if there exists no path connecting them in the task graph. By building the tran-
sitive closure of the task graph, using for example the classical Warshall’s algorithm [War62],
two tasks i and j are concurrent if there is no edge connecting them in the transitive closure
of the DAG. In the following, function are_conc(i,j) will be used to indicate task concurrency
according to the method described in this section. It returns 1/true when tasks i and j are
concurrent and 0/false otherwise.

According to the knowledge of the structure of the task graph, equation (2.2) (amount of
interference) can then be refined as follows. Instead of considering NbCores − 1 contentions
for every memory access, the worst-case number of contenders with a task i is now as in
equation (3.1).

∀i ∈ T, χ ∈ {r, w};
interfχi = min(NbCores− 1,

∑
j∈T

are_conc(i, j)) (3.1)

Further refining the worst-case degree of interference Keeping the example from Figure
3.1, if the two concurrent tasks A and B are mapped on the same core, then their commu-
nication phases do not interfere anymore. Knowledge of tasks’ scheduling (tasks placement
and time window assigned to each task), when known, can further help refining the amount of
interference suffered by a task.

Reasoning in reverse, two phases do not overlap if one ends before the other starts, which
leads, for tasks with read-execute-write semantics, to equation (3.2). For two tasks i and j,

54

3.2. Improving worst-case communication cost

taking two phases τχi and τψj , where χ and ψ can either represent a read or a write, equation
(3.2) states that if phase τψj ends before phase τχi starts or vice versa, then the two phases
τχi and τψj do not overlap. Notice, ρχi defines the start time of phase χ from task i, and ρχi +
DELAY χ

i defines the end time this same phase. We consider here the end date as the first
discrete time point at which the task is over, thus no overlapping occurs when ρψj + DELAY ψ

j

and ρχi are equal.

ρψj +DELAY ψ
j ≤ ρ

χ
i ∨ ρ

χ
i +DELAY χ

i ≤ ρ
ψ
j (3.2)

Then, by negating equation (3.2), equation (3.3) is true if two tasks have overlapping exe-
cution windows. In the following, are_OL(τχi , τ

ψ
j) returns 1/true if the communication delay of

phases τχi and τψj overlap, and 0/false otherwise.

are_OL(τχi , τ
ψ
j) = ¬(ρψj +DELAY ψ

j ≤ ρ
χ
i ∨ ρ

χ
i +DELAY χ

i ≤ ρ
ψ
j)

≡ ρψj +DELAY ψ
j > ρχi ∧ ρ

χ
i +DELAY χ

i > ρψj
(3.3)

Assuming the schedule is known, the degree of interference a task can suffer from can be
determined by counting the number of other tasks that overlap in the schedule. Only concurrent
tasks (function are_conc) can overlap, because dependent (not concurrent) tasks have data
dependencies.

As constrained by the AER execution model (Section 2.2), only communication phases
request accesses to the bus, thus only the amount of interference of the read and write phases
needs to be computed. Looking at write phase Bw from example in Figure 3.2b, both Aw, Cr,
and Dr interfere with it, resulting in an amount of interferences greater than the worst-case –
i.e. 3 ≥ NbCores − 1. Therefore, only one of the two contending tasks from core P1 should
be accounted for as they are both interfering tasks mapped on the same core. Then equations
(3.4a) and (3.4b) counts the number of cores interfering, not only the number of phases.

In complement for clarity, a cast from boolean to integer allow to sum boolean values – i.e.
true = 1, false = 0. The big disjunction is equal to 1, if at least one phase of a concurrent task
j is mapped on the concerned core p, and is overlapping with communication of task i. The
disjunction guarantees that no core with several overlapping phases will be counted more that
once. Finally, there is no need to exclude the core on which i is mapped. Indeed, the scheduler
enforces that bus requests are mutually excluded when originated from the same core.
∀i ∈ T ;

interf ri =
∑
p∈P

 ∨
j∈T |are_conc(i,j)

((are_OL(τ ri , τ rj) ∨ are_OL(τ ri , τwj)) ∧ j is mapped on p)

(3.4a)

interfwi =
∑
p∈P

 ∨
j∈T |are_conc(i,j)

((are_OL(τwi , τwj) ∨ are_OL(τwi , τ rj)) ∧ j is mapped on p)

(3.4b)

55

Computing the precise contention to build contention-aware schedules

The values of interf ri and interfwi from equations (3.4a) and (3.4b) then replace the pes-
simistic value of NbCores - 1 from equation (2.2). This new interference value tighten the
worst-case delay in equation (2.1d) for communication phases. As a reminder, equation (2.1d)
is repeated here.

delayχi = Tslot · waitingSlotsχi · interf
χ
i + Tslot · chunksχi + remainingT imeχi (2.1d)

The two scheduling techniques described in Section 3.3 use these formulas jointly with
schedule generation. But this new contention refinement depends on the knowledge of the
schedule. Therefore, It creates an interdependence between delays computation and tasks
scheduling. The scheduler can no longer use a constant value for communication delays,
which is dependent on tasks mapping, which in turn drastically increases the time complexity
of the problem to solve.

3.3 Resource-aware scheduling techniques

This section modifies the scheduling framework introduced in Section 2.3 including both the
ILP formulation and the heuristic algorithm. They are upgraded to compute the precise worst-
case amount of interference for communication phases. The main outcome of both techniques
is still a static partitioned time-triggered non-pre-emptive schedule, for one single application
represented by a DAG.

3.3.1 Integer Linear Programming (ILP) formulation

Section 2.3.2 introduced the baseline scheduling ILP formulation. This section gives only
modifications, additions or suppressions to apply. As a reminder, initial formulation included
constraints aiming at:

— ensuring the unicity of mapping tasks on cores,

— detecting if two tasks are mapped on the same core,

— ordering tasks and ordering tasks on the same core,

— enforcing the AER execution model,

— enforcing that no pair of phases of the same type (computation/communication) overlaps
on the same core ,

— enforcing data dependencies.

All these previous constraints remain un-modified. Identically, the objective remains: the overall
schedule makespan minimisation. Moreover, boolean operators are still linearised using [BD07]
as in Section 2.3.2.

Table 3.1 summarises the notations and variables removed from the initial framework in
Chapter 2, while Table 3.2 summarises the one added to the ILP formulation.

56

3.3. Resource-aware scheduling techniques

Table 3.1 – Removed Notations

C
on

st
an

ts

DELAY r
i task i read, write phases’ are now fragmented. Therefore,

DELAY w
i a communication delay is attached to each fragment in the following ILP

Table 3.2 – Added Notations & ILP variables

Fu
nc

.

are_conc(i, j) return true if i and j are concurrent, as defined in Section 3.2

C
st

.

Dr
i the cumulated amount of data number task i reads/writes

Dw
i

CHUNKr
i the number of full slots to read/write Dr

i /D
w
i

CHUNKw
i used by eq. (2.1a)

REMTIMEri the remaining time to read/write that do not fit in a full slot
REMTIMEwi from eq. (2.1b)
WAITSLOT ri the number of full slots a read/write phase must wait
WAITSLOTwi used by eq. (2.1c)

In
t.

va
r.s

interf ri the number of interfering tasks of the read/write phases of i
interfwi from eq. (3.4a) and (3.4b)
delayri task i read, write phases’ WCET
delaywi from equations (2.1d)

B
in

.
va

r.s

ovχψi,j = 1 phase χ of i overlaps with phase ψ of j
(χ, ψ) ∈ {rr, ww, rw,wr}

ovcri,p = 1 read or write phase of i interferes with a least one
ovcwi,p = 1 communication phase mapped on p

Computing communication phases interference All the following equations implement, us-
ing linear equations, the refinement of contention duration presented in Section 3.2. With the
use of the function are_conc(i, j) tasks that never interfere with each other are excluded from
the search space. Equations (3.5a) to (3.5d) implement function are_OL derived from equation
(3.3). For each pair of communication phases, the equations indicate if they are overlapping in
the schedule (ovχψi,j = 1, with χ ∈ {rr, ww, rw,wr}).

Note that when there is no data for the considered communication phase (Dr
i = 0, Dw

i = 0),
then there is no possible overlapping, and then each ovχψi,j is forced to be equal to 0 to decrease
the solving time.
∀i ∈ T, ∀j ∈ are_conc(i, j);

ovrri,j =
{

0 if Dr
i = 0 ∨Dr

j = 0
ρri < ρej ∧ ρrj < ρei otherwise

(3.5a)

ovwwi,j =
{

0 if Dw
i = 0 ∨Dw

j = 0
ρwi < ρwj + delaywj ∧ ρwj < ρwi + delaywi otherwise

(3.5b)

57

Computing the precise contention to build contention-aware schedules

ovrwi,j =
{

0 if Dr
i = 0 ∨Dw

j = 0
ρri < ρwj + delaywj ∧ ρwj < ρei otherwise

(3.5c)

ovwri,j =
{

0 if Dw
i = 0 ∨Dr

j = 0
ρwi < ρej ∧ ρrj < ρwi + delaywi otherwise

(3.5d)

Then, as stated in Section 3.2, two communication phases from the same core interfering
with the considered one, should not be counted twice. The amount of interferences corresponds
to the amount of interfering cores, but not the amount of interfering communication phases.
Equations (3.6a) and (3.6b) implement both equations (3.4a) and (3.4b) for both read and write
phases respectively. They count the number of interfering cores in interf ri and interfwi for
respectively the read and write phases of task i.
∀i ∈ T ;

interf ri =
∑

∀p∈P

 ∨
∀j∈T |are_conc(i,j)

(ovrri,j ∨ ovrwi,j) ∧ pj,p

 (3.6a)

interfwi =
∑

∀p∈P

 ∨
∀j∈T |are_conc(i,j)

(ovwwi,j ∨ ovwri,j) ∧ pj,p

 (3.6b)

Finally, equations (3.7a), (3.7b) and (3.7c) highlight three optimizations that constrain the
overlapping variables, to improve the solving time.

ovrri,j = ovrrj,i (3.7a)

ovwwi,j = ovwwj,i (3.7b)

ovwri,j = ovrwj,i (3.7c)

Estimation of worst-case communication duration Previous Chapter 2 used a constant to
represent the communication delay (DELAY χ

i), in this chapter, the delay is dependent on the
current state of the schedule and must therefore be an integer variable (delayχi).

Estimating the communication cost of a read or write phase is then the application of equa-
tion (2.1d) with the right amount of interference from above equations (3.6a) and (3.6b), as in
equation (3.8).

∀i ∈ T ;χ ∈ {r, w}
delayχi = Tslot ·WAITSLOTχi · interf

χ
i + Tslot · CHUNKSχi +REMTIMEχi

(3.8)

3.3.2 Forward List Scheduling algorithm

Section 2.3.3 introduced the scheduling framework for the heuristic algorithm. This section
gives only modifications, additions or suppressions to apply. As a reminder, previous approxi-
mate algorithm is based on list scheduling. The technique scheme orders tasks, then sched-
ules them one by one as soon as possible without backtracking in order to minimise the overall

58

3.3. Resource-aware scheduling techniques

makespan. The same scheme applies to this new version, again tasks ordering is built upon
two BFS and DFS algorithms. The algorithm keeps trying to map tasks on each core and se-
lect the mapping minimising the schedule length. But this new version introduces the effective
worst-case amount of interference in the communication cost. Algorithm 3.3.1 presents this
new version where only novelties are detailed below.

ALGORITHM 3.3.1: Forward list scheduling
Input : A task graph G = (T,E) and a set of processors P
Output : A schedule

1 Function ListSchedule(G = (T,E), P)
2 Elist← BuildListElement(G)
3 Qready← TopologicalSortNode(Elist)
4 Qdone← ∅
5 schedule← ∅
6 while t ∈ Qready do
7 Qready← Qready \{t}
8 Qdone← Qdone ∪{t}

/* tmpSched contains the best schedule for the current task */
9 tmpSched← ∅ with makespan =∞

10 foreach p ∈ P do
11 copyaw ← schedule
12 map t on p in copyaw

13 ScheduleElement(copyaw, Qdone, t, p)
14 AdjustScheduleEffectiveContention(copyaw,Qdone, t)

15 copyfree ← schedule
16 map t on p in copyfree

17 ScheduleElement(copyfree, Qdone, t, p)
18 AdjustScheduleContentionFree(copyfree,Qdone, t)

19 tmpSched← minmakespan(tmpSched, copyaw, copyfree)
20 schedule← tmpSched

21 return schedule

Finding the best solution between contention-aware and contention-free Previous ex-
ample from Section 3.1 depicted the case where the solver postpones a task (not respecting
the ASAP property). With the above ILP formulation, the ILP solver had the opportunity to
select, on a per task basis, the best solution between two options: synchronize every com-
munication phase (perform them in mutual exclusion) to obtain a contention-free schedule, or
enable concurrency if it results in a shorter global schedule.

The heuristic uses a similar approach. Two schedules are computed: one allowing concur-
rent tasks overlapping communication phases (lines 11-14) and one avoiding this overlapping
(lines 15-18). Then the shortest of the two schedules is selected among with the previously
computed schedule (line 19).

59

Computing the precise contention to build contention-aware schedules

ALGORITHM 3.3.2: Adjust schedule in contention-free mode : Updating the schedule to avoid con-
tention
Input : An incomplete schedule schedule, the list of already mapped tasks Qdone and the newly

mapped task cur_task
Output : An updated schedule

1 Function AdjustScheduleContentionFree(schedule,Qdone, cur_task)
2 mark cur_task as contention-free
3 while schedule is not stable do
4 foreach t ∈ Qdone| do
5 if (are_OL(t,cur_task) then
6 ρr

cur_task ← ρw
t + delayw

t

7 return schedule

Scheduling contention-free task Algorithm 3.3.2 guarantees that the added task does not
suffer from any contention by shifting it forward along its processor time line. That process is
repeated until a stable state is reached, because shifting a task on a core can create interfer-
ence with another task on another core. Convergence is always reached as the task is moved
in only one direction, and at some point this task will be the last one scheduled.

Because list scheduling algorithms enforce a non-backtracking policy, when a task is deemed
to be contention-free, the scheduler must keep track of this decision. Algorithm 3.3.2 fulfils this
requirement. It marks the task to avoid future creation of interference with itself when adding
new tasks.

Updating the schedule to cope with interference The contribution of this algorithm is to
compute the effective worst-case amount of interference in communication cost at schedule
time. This cost depends on past and future mapping decisions. Therefore, after scheduling
each task, the communication costs in relation with the newly scheduled task must be re-
computed and tasks must be moved on the time line of each involved core to ensure a valid
schedule, i.e. a schedule accounting for all interferences (line 14 in Algorithm 3.3.1).

Each time a task is added, new interferences caused by the addition of the task in the
schedule must be added, and the delay of (some) communication phases must be recomputed.

As an example, Figure 3.3a depicts a partial initial schedule extracted from example from
Section 3.1. White/grey/dark boxes still represent read/exec/write phases. A task F mapped
on P1 sends 3 tokens to a task not yet in the schedule and a task H receiving 5 tokens with a
Tslot = 3 and Dslot = 3, thus delaywF = 3 and delayrH = 5 (equation (3.8), in this situation none
of them suffers from any parallel task). Figure 3.3b sketches the addition of task G on P2, it
writes 5 tokens. The writing delay delaywC and reading delay delayrH must be adjusted now to
account for the interference introduced by Gw. Thus, the new writing delay for task F becomes
delaywF = 6, and reading delay for task H becomes delayrH = 11, as now there is 1 interference.
As a consequence; the read task Hr moves to guarantee that only one bus request is active at
a time. Then, exec phase of task H moves to guarantee the blocking communication restriction
(Section 2.2.1).

Whenever a communicating task already mapped needs to be rescheduled/delayed, it may

60

3.3. Resource-aware scheduling techniques

(a)

(b)

Figure 3.3 – Example of adjustments that occur while scheduling. (3.3a) initial schedule of 2
tasks. (3.3b) adjusted communication delays after the addition of task G

change the number of interfering tasks. The communication delay of all tasks impacted by
this change must therefore be recomputed, since they may in turn also create interference.
The partial communication delay calculation must therefore proceed iteratively until no task is
impacted anymore.

ALGORITHM 3.3.3: Adjust schedule in contention-aware mode : Updating the schedule to cope
with interference
Input : An incomplete schedule schedule, the list of already mapped tasks Qdone and the newly

mapped task cur_task
Output : An updated schedule

1 Function AdjustScheduleEffectiveContention(schedule,Qdone, cur_task)
2 while schedule.length is not stable do
3 rSet← BuildRelated(schedule, Qdone, cur_task)
4 foreach t ∈ rSet do
5 if t is not marked contention-free then
6 re-Compute delayr

t and delayw
t using equations (2.1d) and (3.4a)/(3.4b)

7 foreach (t, t′) ∈ rSet ∪ rSet|t¬t′ ∧ ρr
t < ρr

t′ do
8 if (t and t′ are mapped on the same core ∨ t is marked contention-free) ∧ are_OL(t,t’)

then
9 ρr

t′ ← ρw
t + delayw

t

10 return schedule

To reduce the number of tasks impacted by each adjustment, algorithm 3.3.3 first computes
the set of related tasks (line 3), i.e. tasks that can be impacted by the addition of the current
task. To build this set, it is simple as looking into the schedule for tasks with a recursively
overlapping communication phase or scheduled later.

Then from the related task set, Algorithm 3.3.3 recomputes the delay of each communica-

61

Computing the precise contention to build contention-aware schedules

tion phase (line 6). Due to previous tasks movement on the processor time lines, lines 7-9 shift
forward tasks to guarantee execution constraints: no two tasks execute on the same core at
the same time, and synchronisation decision are still met. This process is then repeated until
the length of the schedule becomes stable.

Convergence of Algorithm 3.3.3 is always reached since, at worst, every concurrent task
will interfere and no previous decision regarding placement and ordering are discussed (non-
backtracking). In addition, tasks can be shifted (line 9), but in only one direction, therefore the
increase of the release time is monotonic.

3.4 Experiments

This chapter presented a modification of the ILP formulation and the heuristic algorithm
from Chapter 2. Therefore, the first presented experiment aims at validating the quality of the
new heuristic algorithm against the ILP formulation, as in previous experiments in Section 2.4.
Then, an empirical evaluation shows the benefits of counting the effective worst-contention
using the approximate method. Experiments were conducted on real code, in the form of the
open-source refactored StreamIT [TKA02] benchmark suite: STR2RTS [RP17], as well as on
synthetic task graphs generated using the TGFF [DRW98] graph generator.

Applications from the STR2RTS benchmark suite are modelled using fork-join graphs and
come with timing estimates for each task and amount of data exchanged between them. We
were not able to use all the benchmarks and applications provided in the suite due to difficulties
when extracting information (e.g. task graph, WCET) or because some test cases are linear
chains of tasks with no concurrency. A table summarising the used benchmarks is available in
appendix (page 94).

Task Graph For Free (TGFF) is used, as in Chapter 2 when there is a need to generate a
large number of task graphs. It is used to evaluate the quality of the heuristic against the ILP
formulation. Due to the intrinsic complexity of solving the scheduling problem using ILP, we
need for that experiment small task graphs such that the ILP is solved in reasonable time.

The same STG set from previous chapter, Section 2.4 is reused. Table 3.3 reminds the
resulting parameters of the task set. The table includes the number of task graphs, their number
of tasks, the width of the task graph, the range of WCET values for each task and the range of
amount of exchanged data in bytes between pairs of tasks.

Table 3.3 – Task graph parameters for synthetic task graphs

#Task
graphs

#Tasks Width WCET
Amount of

bytes exchanged
<min,max,avg>

STG 50 5, 69, 22 3, 17, 8 [5; 6000[[0; 192]

As previously, all reported experiments have been conducted on several nodes from an
heterogeneous computing grid with 138 computing nodes (1700 cores). Because last chapter
in Section 2.4.3 showed that the value of Tslot has a little impact on the schedule makespan,
but it is rather better to keep it small, in all experiments Tslot = 3 as in [KHM+13]. The transfer
rate is one word (4 bytes) per time unit.

62

3.4. Experiments

3.4.1 Quality of the heuristic compared to ILP

The following experiments aim at quantifying the over-approximation induced by the heuris-
tic algorithm in the same manner than in Section 2.4.2. This gap is still expected to be small.
Again, this experiment employs the STG task set with number of varying in ∈ {2, 4, 8, 12}. The
heuristic is implemented in C++ and CPLEX was configured with a timeout of 11 hours.

Table 3.4 – Degradation of the heuristic compared with the ILP (synthetic task graphs / STG)

% of exact results degradation
(ILP only) <min,max,avg> %

66% 0%, 20%, 2%

Table 3.4 summarises the results, the first column presents the percentage of exact results
the ILP solver is able to find in the granted time. As in Section 2.4.2, we only refer to the exact
solutions for the comparison as the feasible ones (i.e not exact) might bias the conclusion on the
quality of the heuristic compared to the ILP. Therefore remaining 34% include feasible solutions
as well as problems where timeout was reached (nor optimal solution found, neither proved
infeasible). The second column presents the minimum, maximum and average degradation in
percent.

The average degradation is low, which means our heuristic has acceptable quality. A deeper
analysis of the distribution of degradation, Figure 3.4, shows that 96% of the heuristic schedules
are less than 10% worse than the ILP formulation solutions. We also observed a schedule
generation time far much lower for the heuristic than the ILP solving time, < 1 second on
average, with a maximum observed of 2 seconds.

[0
; 1

[

[1
; 2

[

[2
; 3

[

[3
; 4

[

[4
; 5

[

[5
; 6

[

[6
; 7

[

[7
; 8

[

[8
; 9

[

[9
; 1

1
[

[1
1

; 1
2

[

[1
2

; 1
3

[

[1
3

; 1
4

[

[1
4

; 1
6

[

[1
6

; 1
7

[

[1
7

; 1
8

[

[1
8

; 1
9

[

[1
9

; 2
0

[

[2
0

; 2
1

[

[2
1

; 1
0

0
]

0

10

20

30

40

50

60

70

80

90

100 95

4
7

4 3 5 4
1 1 0 2 0 1 0 1 1 1 0 1 0

% range of degradation

N
u

m
b

e
r

o
f g

ra
p

h
s

Figure 3.4 – Distribution of the degradation of the heuristic against the ILP formulation using
STG task set.

63

Computing the precise contention to build contention-aware schedules

3.4.2 Quality of the heuristic compared to worst-contention communications

We estimated the gain when using the method presented in this chapter to tighten com-
munication delays over the same heuristic using the worst-contention scenario from Chapter
2. The higher is the gain the tighter is the proposed estimation of communication delays. Ex-
periment were performed on the STR2RTS benchmarks suite previously described. Hardware
parameters were identical as in previous experiments.

Figure 3.5 – Gain in % obtained with contention-aware scenario (heuristic, STR2RTS bench-
marks)

Results are depicted in Figure 3.5 by blue bars. The gain is computed using equation 3.9.

worst concurreny − accurate interference
worst concurrency

(3.9)

Results show that the gain to use the accurate degree of interference (contention-aware)
decreases the overall makespan of 59% on average over the worst-contention, demonstrating
the benefits of precisely computing the degree of interference at schedule time.

3.4.3 Quality of the heuristic compared to contention-free communications

Recent papers [PBB+11; AP14; BDN+16] suggested to build contention-free schedules to
nullify interference cost. Due to the different task models and system models in the afore-
mentioned works, a direct comparison with them is hard to achieve. Thus, we modified our
heuristic to produce a schedule without any contention and to be as close as possible to the
ideas defended in the mentioned papers. The gain of a contention-free heuristic against a
worst-contention one is depicted for the StreamIt benchmarks in Figure 3.5 by red bars.

Among the contention-aware and contention-free variants of our heuristic, no method out-
performs the other for all benchmarks. Moreover, the difference between the schedule makespans

64

3.5. Related work

using the two variants is very small. The average difference is 0,08%, with a worst value of
0,3%. Contention-free communications scenario (red bars) give better results for fft3, fft5, fil-
terbank, fm, hdtv, mp3, tconvolve and vocoder ; the proposed heuristic (blue bars) gives better
for audiobeam, beamformer, mpd ; the results for all other benchmarks are identical. Regard-
ing schedule generation duration for the STR2RTS benchmarks, contention-free solutions are
found in less than 30 seconds on average, while contention-aware once need less than 3
minutes on average. The shortest schedule generation times were obviously observed when
generating contention-free schedules, because no estimation of interference costs has to be
performed at all.

3.5 Related work

Shared resources in multi-core systems may be either shared software objects (such as
variables) that have to be used in mutual exclusion or shared hardware resources (such as
buses or caches) that are shared between cores according to some resource arbitration policies
(TDMA, round-robin, . . .). Dealing with shared objects is not new, and there now exists several
techniques adapted from the single-core systems. Section 1.6.5 pictured the wide range of
possibilities to manage such shared resources. Beyond shared objects, multi-core processors
feature hardware resources that may be accessed concurrently by tasks running on different
cores. A contention analysis then has to be defined to determine the worst case delay for a
task to gain access to the resource.

Approaches to estimate contention delays for round-robin arbitration differ according to the
nature and amount of information used to estimate contention delays. For architectures with
caches, Dasari et al. [DN12; DNA16] only assume task mapping known, whereas Rihani et
al. [HMC+16] assume both mapping and execution order on each core known. Schliecker
et al. [SNE10] tightly determine the number of interfering bus requests. In comparison with
these works, this chapter jointly calculates task scheduling and contentions with the objective
of minimising the schedule makespan by letting the technique decide when it is necessary to
avoid or to account for interference.

Altmeyer et al. [ADI+15] created a framework to compute the response time of a sporadic
task set previously mapped and scheduled on a multi-core. This work has been implemented
to target the Kalray MPPA [DVP+14] by Rihani et al. [HMC+16]. In [ADI+15], they focus on the
computation of memory accesses delay according to different memory hierarchy architecture
(caches, SPMs, mixed of both), and different bus arbitration (FIFO, Round-Robin, TDMA . . .).
Their work is orthogonal to ours as we deal with an AER execution model, and a SPM utili-
sation that excludes any bus access during the execution. Therefore, our isolation of memory
requests allow us to relax their conservative assumptions regarding where and when in the
task memory accesses occur. However, we can improve our method with their work to more
precisely compute communication delays when two or more communications phases partially
overlap, which is left for future work.

Becker et al. [BDN+16] proposed an ILP formulation and a heuristic aiming at scheduling
periodic independent PREM-based tasks on one cluster of a Kalray MPPA processor. They
systematically create a contention-free schedule. The presented work in this chapter differs in
the considered task model as well as the goal to reach. They consider sporadic independent

65

Computing the precise contention to build contention-aware schedules

tasks to which they aim at finding a valid schedule that meets each tasks’ deadline. In contrast,
we consider one iteration of a task graph and we aim at finding the shortest schedule. In addi-
tion, resulting schedules might include overlapping communications due to scheduler decision,
while [AP14; BDN+16] only allow contention-free communication.

Using legacy code, or legacy schedule, Martinez et al. [MHP17] reduced contention in
input schedules by introducing slack time between the execution of pairs of tasks consecutively
assigned to the same core, which limits the contention between concurrent tasks.

Giannopoulou et al proposed in [GSH+16] a combined analysis of computing, memory and
communication scheduling in a mixed-criticality setting, for cluster-based architectures such as
the Kalray MPPA. Similarly to our work, the authors aim, among others, at precisely estimating
contention delays, in particular by identifying tasks that may run in parallel under the FTTS
schedule, that uses synchronization barriers. However, to the best of our knowledge they do
not take benefit of the application structure, in particular dependencies between tasks to further
refine contention delays.

To quantify memory interference on DRAM-banks, [KDA+14; YPV15] proposed two analy-
ses, request-driven and job-driven. The former one bounds memory request delays considering
memory interference on the DRAM bank, while the latter adds the worst-contention on the data-
bus of the DRAM. Their work is orthogonal to ours: the request-driven analysis would refine
the access time part in our delay, while our method could refine their job-driven analysis by
decreasing the amount of concurrency they use.

In [BCS+16], an off-line/on-line combined technique monitors the bandwidth to access an
off-chip memory. In the off-line mode, they assume a worst-contention scenario. Then on-
line, when a contention threshold is reached best-effort tasks are suspended to leave real-time
tasks executing. Then when a down threshold is reached again, best-effort tasks are resumed.
This approach differs in many point as this dissertation di not mix off-line and on-line modes,
no mixed criticality tasks. But this dissertation computes the affective amount of interference
off-line.

3.6 Conclusion

This chapter showed how to take advantage of the structure of parallel applications, along
with their target hardware platforms, to obtain tight estimates of contention delays. The pre-
sented approach builds on a precise model of the cost of bus contention for a round-robin
bus arbitration policy, which we use to define a mapping/scheduling strategy. This strategy
is implemented in a ILP formulation that formally describes the solved problem, and with an
approximate algorithm that solves the problem faster. The empirical evaluation demonstrates
the validity of the heuristic algorithm by showing that the over-approximation, induced by such
technique, remains low (2% in average). Then, the experimental results show that, compared
to a scenario accounting for a worst case contention, this approach improves the schedule
makespan by 59% on average. Nevertheless, experiments also show that allowing the sched-
uler to chose between contention-free and contention-aware scheduling methods mostly results
in schedules free from contention. In addition, generating a contention-free schedule needs
less computation time/power.

This conclusion, regarding contention-free schedules, must be balanced with the context of

66

3.6. Conclusion

this dissertation. The usage of AER execution model in concordance with SPM-based archi-
tecture enforces an isolation of memory accesses. However, in legacy software, it is difficult
to identify where the memory accesses occur within a task (or the scheduler does not have
this knowledge). Scheduling all tasks in a contention-free manner (no task can run in paral-
lel on different cores) would be equivalent to a sequential schedule on a single-core, and the
benefit of using a multi-core architecture will be lost. We are quite confident that applying our
contention-aware scheduling method with such execution model will result in tighter schedule
length than both worst-contention and contention-free solutions at the task level.

The code of this scheduler using both techniques (ILP, heuristic) and accounting for con-
tention is available at https://gitlab.inria.fr/brouxel/methane.

One of the limitation in the presented approach is its restriction to blocking communications.
A natural extension of this work is therefore to relax this constraint and introduce support for
asynchronous communications, which are notoriously more challenging to support in a real-
time context. Next Chapter 4 develops this idea in details.

67

https://gitlab.inria.fr/brouxel/methane

CHAPTER 4

HIDING COMMUNICATION LATENCIES IN
CONTENTION-FREE SCHEDULES

Efficient and predictable management of SPMs are facilitated by application models that
offer a high-level view of parallel programs. As previously, this chapter focuses on applications
modelled as DAGs, consisting of dependent tasks that exchange data through shared FIFO
channels. The AER execution model [MNP+16] is well-suited for SPM-based architectures, as
only communication phases accesses the main memory and computation phases can perform
in isolation from other tasks. Using proper scheduling techniques, communication can perform
without contention which has been shown in previous Chapter 3 to be equivalent in terms of
makespan to a precise evaluation of contention with a much slower solving time. Therefore,
this chapter embraces this conclusion by adopting a contention-free scheduling strategy.

Blocking communication configuration, from previous chapters, limits the performance of
applications by stalling the computing core while data is transmitted between the SPM and the
off-chip memory. Relaxing this blocking constraint decreases the impact of communication la-
tencies on the schedule and allow to overlap computation and communication. It consists in
adding a pinch of asynchrony with non-blocking communication. Then, the core is not stalled,
and bus requests can be performed in parallel with computation on cores. To further increase
the number of hiding opportunities, fragmented communications enable to cut the communica-
tion phases into pieces that are small enough to fit under small computation tasks. Non-blocking
fragmented communication is the explored path in this chapter to further optimise the schedule
length.

To enable non-blocking communication, the assumed hardware from previous chapters is
updated to integrate both a Direct Memory Access (DMA) and a dual-ported SPM. The DMA is
in charge of actually executing the transfer between the SPM and the off-chip memory. A dual-
ported SPM supports concurrent loading and unloading information from both the DMA and the
core. Concurrent accesses raise a question of data integrity, if the two actors write some data at
the same memory location. However, with a proper SPM allocation scheme decided at design
time, a compiler is able to enforce this data integrity issue. Also, a SPM allocation scheme
helps to relax the unrealistic unlimited-size SPM assumption from Chapter 2 and Chapter 3.

Additionally, and in comparison with the recent related works (such as [KM08; COK+12;
TPG+14]), we permit fragmentation of communication phases, thus allowing a single commu-
nication phase to be hidden in multiple execution phases. We contrast with most other works
dealing with SPM, e.g. [DP07; BMD+18], by allocating memory regions for the whole data and
code, when they aim at deciding the SPM content (what should be stored in SPM or left in the
off-chip memory).

In summary, the contributions of this work are:

i) We propose a strategy to map and schedule a task graph onto cores coupled with a

69

Hiding communication latencies in contention-free schedules

SPM allocation scheme. The generated static contention-free non-preemptive schedules
allow, when possible, to overlap communications and computations, through non-blocking
loading/unloading of information into/from SPM. Communication phases are fragmented
to maximise the duration of overlapping between communications and computations. The
proposed strategy is formulated using an Integer Linear Programming (ILP) formulation,
producing optimal schedules, and a heuristic based on list-scheduling.

ii) We provide an experimental evaluation showing our method improves the overall makespan,
up to 16% on both real-life and synthetic applications, compared to equivalent schedules
generated with blocking communications.

iii) We evaluate the impact of different granularities for communication fragments on the
schedule makespan, gain increases with smaller fragments.

The method detailed in this chapter is presented in [RSD+19]. The related paper also
describes the implementation of schedules, generated with the following method, on a Kalray
MPPA Bostan [DVP+14].

The rest of this chapter details the proposed techniques and is organised as follows. Sec-
tions 4.1 and 4.2 summarise the modifications to apply on respectively the hardware and the
execution model, leaving other elements of the context identical to the ones used in the previ-
ous chapters. A motivating example is presented in Section 4.3. Then, Section 4.4 presents the
basic principles of the SPM allocation scheme. The scheduling/mapping/allocation strategies
(ILP formulation and heuristic) are detailed in Section 4.5. Section 4.6 presents experimental
results. Finally, Section 4.7 presents related studies, before concluding in Section 4.8.

4.1 Hardware support

With the same spirit than in previous chapters, we consider multi-core architectures where
every core has access to a SPM. Cores are connected through a bus to the off-chip memory
with a FAIR-round-robin arbitration [Ens77]. All communications are non-preemptable and go
through the shared global memory (no SPM to SPM communication).

This chapter allows both communication and computation to be performed in parallel. As
opposed to previous chapters, the multi-core platform is equipped with a Direct Memory Ac-
cess (DMA) and a dual-ported SPM. At a specific time, the DMA is able to perform the transfer
between the main memory and SPM, which is essential to overlap computation and communi-
cation. A dual-ported SPM integrates two ports, one for core accesses, one for DMA accesses,
hence allows concurrent accesses from both DMA and CPU.

Provided support may be either a hardware DMA engine or a specific core acting as a
DMA software engine (as long as this specific core has access to other core SPM). Figure
4.1a presents a hardware abstraction with a hardware DMA engine for each core (inspired
by ??), while Figure 4.1b depicts an abstract view of a software DMA where a master core
dispatch data between the DRAM and SPMs (inspired by [CLC+09]). At any time, in these
two examples, the computing core is able to access the external memory without a request
to the DMA. These assumptions are realistic, and are met in both academic and commercial
processors (e.g. Patmos [SBH+15], Kalray MPPA [DVP+14]).

Communications can be implemented in blocking mode or non-blocking mode. In blocking
mode (Chapters 2 and 3), the CPU is in charge of transfers between its SPM and the shared

70

4.2. Software & execution model support

DRAM

SPM

DMA

SPM

DMA

SPM

DMA

Bus

(a) Multi-core platform abstraction with a hard-
ware DMA and a dual-ported SPM

DRAM

SPM

Bus
SPM

SPM

Master
 core

(b) Multi-core platform abstraction with a mas-
ter core acting as a software DMA and a dual-
ported SPM

Figure 4.1 – Hardware abstraction

memory, and is stalled during every transfer. In non-blocking mode, transfers are managed
asynchronously, allowing the CPU to execute other jobs during every transfer.

4.2 Software & execution model support

Assumptions on the application model remain from previous chapters. Applications are
still modelled as directed acyclic graphs (DAG). Again, each task is divided in three phases
according to the AER execution model.

Compared to the original AER model, we split each communication into fragments. A frag-
ment is some division of the total amount of data that a task produces/consumes, required by
its successive/preceding tasks, written/read to/from the main memory. How the data are di-
vided is determined by the fragmentation scheme, detailed in Section 4.6.3. Thus, a task τi is a
tuple τi =< F ri , τ

e
i , F

w
i >, where τ ei is the exec phase, and F ri (resp. Fwi) is the set of fragments

read (resp. written) by the task. A single fragment f of task i that is read (resp. written) is
denoted as τ r(i,f) ∈ F

r
i (resp. τw(i,f) ∈ F

w
i).

Since the code in our experimental evaluation, is generally small and likely to be reused
along the execution of the application, for simplicity reasons we assume that the code is
preloaded in the SPM at startup. However, enabling code prefetching could be easily done,
by including the size of the code of a task in the amount of data to be fetched by its read phase.
The SPM is then used to store both the code and data.

4.3 Motivating example

Figure 4.3 illustrates the optimal solutions for the application in Figure 4.2, targeting a tri-
core architecture with identical WCET estimates as in Table 2.1. All figures display a contention-
free scenario, where there are never two communication phases active at each time. As pre-
viously, communication phases are carried by the DMA and corresponds to tokens exchanged

71

Hiding communication latencies in contention-free schedules

D J

1

E

2

2

1

3

5A

B

C

A

F

G

H

2

2

2

1
1

Figure 4.2 – Running task graph example, identical to Figure 2.3

between tasks, the code being previously loaded into the SPM and local data accesses are
only through the SPM.

Again in Figure 4.3, for each core, the top time-line depicts the exec phases scheduling
(grey boxes) and the bottom one the bus usage with read phases (white boxes, black font)
and write phases (dark boxes, white font). Again, below each communication phase, the corre-
sponding communication cost is indicated for a contention-free schedule. The SPM is assumed
large enough to store all information (code, data, communication buffers), this assumption will
be relaxed in Section 4.4.

In Figure 4.3a, the schedule is generated with the ILP formulation from Chapter 3 with forced
contention-free worst-case blocking communications. All parts of the same task are scheduled
contiguously on the same core, and the CPU is stalled while accessing the bus. The read and
write phases are not fragmented as it would not bring any benefit in blocking mode.

The schedule from Figure 4.3b represents an intermediary step with the introduction of non-
blocking communication without fragmentation. Therefore, communication phases overlap with
computation which hides their latency underneath (e.g.: τ rF overlaps with τ eD). The communica-
tion latencies of this phase are hidden behind the exec phase of task τD. The resulting overall
makespan is 69 time units which show an improvement of 2% over the blocking scheme.

We observed from Figure 4.3b that their are very little opportunities to overlap communi-
cation and computation with this application on this architecture. In addition to non-blocking,
fragmented communications offer more flexibility as pictured by the schedule from Figure 4.3c
with the default fragmentation policy of one fragment per incoming/outgoing edge. This fig-
ure points out more opportunities with non-blocking fragmented communication to overlap with
exec phases, e.g. τw(C,2) and τw(C,3) overlap with τ eG, thus hiding the communication delay. Having
prefetched all required data into the SPM, the exec phase of τG can start as soon as possible
after task τC .

The gain in schedule length from Figure 4.3c is obtained by introducing the following flexi-
bilities in the scheduling of communication fragments, while respecting read-exec-write phase’s
order:

i) communication phases of different tasks can have a different order than their respective
exec phases, as long as there is no data dependencies between them, e.g. τw(B,2) is
scheduled after τ r(E,1), in reverse order compared to τ eB and τ eE .

ii) communication phases and exec phase of the same task, do not need to be contiguous
in time, e.g. τ r(B,1) and τ eB are not.

72

4.3. Motivating example

P1
A

B

D

E

G

P2

C

H

F

J

0 10 20 30 40 50 60 70

Bus usage

Bus usage

3
A

1
E

2
G

5
G

1
D

5

J

H

2

H
1

F

6

F

3

C

B
3 1

E

Cr

2

P3
Bus usage

9

(a) Resulting schedule from Chapter 3 with forced contention-free communication, blocking, non-
fragmented mode – overall makespan 71 time units

P1
A

B

D

E

G

P2

C

H

F

J

0 10 20 30 40 50 60 70

Bus usage

Bus usage

3
A

1
E

2
G

5
G

1
D

5

J
9

H

2

H
1

F

6

F
3

C

B
3 1

E

C
2

P3
Bus usage

(b) (Intermediate) Resulting contention-free schedule with non-blocking, non-fragmented mode – overall
makespan 69 time units

P1
A

B

D

E

G

P2

C

F

J

0 10 20 30 40 50 60

Bus usage

Bus usage
2

A
1

2

G
1

5

G
1

1

D
1

J
1
5

H
1

2

1

F
1

2

F
1

3

C
1

B
1

1 1

E
1

C
1
2

P3
Bus usage

2

A
2

2

B
2

2

H
1

2

C
2

2

C
3

H

1

E
1
1

H
3

2

H
2

3 1

J
2

J
3

(c) Resulting contention-free schedule from Chapter 4, non-blocking, fragmented mode – overall
makespan 61 time units

Figure 4.3 – Motivating example

iii) communications are fragmented, a task with multiple successors does not write all its
data at once, e.g. task B has two successors, thus writing two fragments.

The last point (fragmented communications) is new, as compared to related works (Section
4.7). Considering each fragment individually allows additional overlaps between communica-
tions and calculations that were not previously possible. In the example, it allows to hide part of
the write phase of task τA, and part of the read phase of task τB, which was not possible with-
out fragmentation. Thus, splitting communications allows each source/sink of the task graph to
hide part of its communications. However, in the example from Figure 4.3c, the remaining first

73

Hiding communication latencies in contention-free schedules

part Aw (τw(A,1)) can still not be hidden, but is however smaller than in Figure 4.3b. The overall
makespan of the resulting schedule in non-blocking mode with fragmented communications
(Figure 4.3c) is 61 time units, resulting in a gain of 20% over the blocking scheme.

4.4 SPM allocation scheme

In previous motivational example, we assumed the SPM large enough to store all informa-
tion required to execute the entire application (code, data, communication buffers). To account
for limited SPM capacity, our scheduling strategy comes with a SPM allocation strategy that
allocates an SPM area (called hereafter region) to each communication fragment and execu-
tion phase. Fragment-to-region mapping is performed by the scheduler off-line. The same
region can be used by different fragments, the scheduler guarantees that the time ranges of
the concerned fragments do not overlap.

To isolate bus accesses from computation, we impose that all information accessed by a
task is loaded into SPM beforehand. This comes in opposition to most SPM allocation policies
that decide which information should be stored in the SPM and which information should remain
in the global main memory (e.g. [DP07]). Our fragment-to-region mapping is inspired by the
method proposed in [KBC+14].

The regions assigned to the fragments F ri contain the input data, fetched from the main
memory, which are required by the task’s exec phase. These regions contain the data produced
by all predecessor tasks. The unique region assigned to τ ei contains any kind of information
used locally by the task (code, constants, local data, usually stack-allocated). The regions
assigned to Fwi contain the data produced by the task.

The size of a region obviously depends on the amount of data required by the associated
fragment (i.e. amount of data produced by a predecessor in case of a read fragment). Consid-
ering a mapping of tasks to cores and a mapping of fragments to SPM regions, the sum of the
sizes of regions on a core must not exceed the SPM size.

Let us consider the example of Figure 4.3c, in which for simplicity we concentrate on the
communication fragments and ignore the execution phases. If the size of the SPM is 1 Kbytes
then on processor P2 the SPM can be partitioned in eight regions SPM = {τw(B,1), τ

w
(B,2), τ

r
(E,1),

τw(E,1), τ
r
(H,1), τ

r
(H,2), τ

r
(H,3), τ

w
(H,1)} with respective sizes in bytes {1, 2, 1, 1, 2, 2, 1, 1} (according to

the amount of data exchanged between tasks, taken from Figure 4.2). The sum of the regions’
sizes is 11 bytes, which is less than the SPM size. If we now restrict the SPM size to 10
bytes, the previous partitioning of SPM in regions is not valid anymore. However, once τw(B,2)
is completed, the data produced by task τB has been committed to the global shared memory,
therefore its assigned region can be reused. In this example, τw(H,1) starts after the completion
of τw(B,2). Thus, the fragments τw(B,1) and τw(H,1) can be assigned to the same SPM region, leaving
a partitioning of seven regions: SPM = {τw(B,1), {τ

w
(B,2), τ

w
(H,1)}, τ

r
(E,1), τ

w
(E,1), τ

r
(H,1), τ

r
(H,2), τ

r
(H,3)}

with respective sizes (in bytes) {1,max(2, 1), 1, 1, 2, 2, 1}. The sum of all regions’ sizes is 10
bytes, which can fit in the SPM.

In the example, the pair (τw(B,2), τ
w
(H,1)) could share the same region, because their lifespans

do not overlap. On the other hand, in Figure 4.3c, τ r(E,1) cannot share the same region as τ r(H,1),
because the data consumed by task τE are in use from the start of the read phase T rE up to
the end of the execution of τE . This leads to define the live range of regions for each type of

74

4.5. Non-blocking contention-free scheduling techniques

fragment. Definition 1 defines the live range for a region assigned to a read fragment, while
Definitions 2 and 3 give live ranges for regions assigned respectively to an exec and a write
fragment.

Definition 1. Data fetched from the main memory by a read fragment are alive from its start
time to the end of the exec phase.

Definition 2. Local information used by an exec phase (code, stack data area) are alive for the
whole execution time of the application.

Definition 3. Data written back to main memory by a write fragment are alive from the start
time of the exec phase to its transmission end time.

We assume read/written data can be consumed/produced at any time in the exec phase of
the task. Therefore, the live range in Definitions 1 and 3 include the duration of the exec phase.

The scheduler maps fragments to regions, but does not decide the addresses of the regions
in the SPM, which is left to the compiler/code generator. Since the number and size of regions
is decided off-line, address assignment is straightforward, and does cause external fragmen-
tation. Fragmentation of the SPM can only arise inside regions (internal fragmentation) when
two (or more) phases are assigned to the same region but store different amounts of data.

4.5 Non-blocking contention-free scheduling techniques

This section modifies the scheduling framework introduced in Section 2.3 including both
the ILP formulation and the heuristic algorithm. They are upgraded to integrate fragmented
non-blocking communication and a SPM allocation scheme in contention-free scheduling tech-
niques. The main outcome of both techniques is still a static partitioned time-triggered non-pre-
emptive schedule, for one single application represented by a DAG.

4.5.1 Integer Linear Programming (ILP) formulation

Section 2.3.2 introduced the baseline scheduling ILP formulation. This section gives only
modifications, additions or suppressions to apply. As a reminder, initial formulation included
constraints aiming at:

— ensuring the unicity of mapping tasks on cores,
— detecting if two tasks are mapped on the same core,
— ordering tasks and particularly those on the same core,
— enforcing the AER execution model,
— enforcing that no pair of phases of the same type (computation/communication) overlaps

on the same core ,
— enforcing data dependencies.

All these previous constraints remain un-modified. Identically, the objective remains: the overall
schedule makespan minimisation. Moreover, boolean operators are still linearised using [BD07]
as in Section 2.3.2.

Table 4.1 summarises the notations and variables removed from the initial framework in
Chapter 2, while Table 4.2 summarises the one added to the ILP formulation.

75

Hiding communication latencies in contention-free schedules

Table 4.1 – Removed Notations & ILP variables

C
on

st
an

ts

DELAY r
i task i read, write phases’ WCET now need to be computed

DELAY w
i by the ILP solver as the amount of interference depends on the schedule

Table 4.2 – Notations & ILP variables

S
et

s

F ri , F
w
i sets of fragments for task i ∈ T

F = ∀i inT, F ri ∪ Fwi sets of all fragments from all tasks in T
R set of regions intialised with a region per phase

(j, g) ∈ pred(i, f) fragment g from task j is a direct predecessor of
fragment f from task i

Fn i = task(f) utility to retrieve the task of a fragment,
fragment f belongs to task i

C
on

st
an

ts

SSi local (stack) data of τ ei
CSi code size of τ ei
Dr

(i,f), D
w
(i,f) data in bytes of fragment f in task i

DELAY r
(i,f) fragment f of task i, read /write latency from Equation (4.1)

DELAY w
(i,f)

SPMSIZE
core local memory size (SPM). There is only one SPM size for
every core, but specialising this constant per core is straightforward.

In
t.

va
rs

ρr(i,f), ρ
e
i , ρ

w
(i,g)

start times of read fragment f , exec phase
and write fragment g of task i

σ(i,f), σi
spm reservation start times of read/write fragment f , exec phase
of task i

ω(i,f), ωi
spm reservation end times of read/write fragment f , exec phase
of task i

spmsrcz computed size of SPM region z on core c

B
in

.
va

rs

aχψ(i,f),(j,g) = 1 τχ(i,f) is scheduled before τψ(j,g), in the sense ρχ(i,f) ≤ ρ
ψ
(j,g)

χ ∈ {r, w} and ψ ∈ {r, w}
spmpz,i = 1 τ ei is allocated to SPM region z
spmpz,(i,f) = 1 fragment f from task i is allocated to SPM region z

spmm(i,f),(j,g) = 1 fragment f from task i and fragment g from task j
are assigned to the same region (similar to mi,j from Table 2.2)

spma(i,f),(j,g) = 1 fragment f from task i is causally before fragment g
from task j (similar to ai,j from Table 2.2)

spmam(i,f),(j,g) = 1 fragment f from task i is causally before fragment g
from task j, and both are assigned to the same region
(similar to ami,j from Table 2.2)

Computing the communication delays Calculation of communication delays for fragments
f of a task i (DELAY r

(i,f) and DELAY w
(i,f) in the ILP formulation), is identical to computing the

76

4.5. Non-blocking contention-free scheduling techniques

WCET of the communication phase from Section 2.3.2 with equation (2.1d) (repeated below).
But for the scope of this chapter, we generate contention-free schedules, thus no contention
delay is paid when accessing the shared bus, and the duration of a data transfer of d bytes is
very simply calculated by equation (4.1). This equation could be refined to account for DRAM
access cost, as done in [KBC+14].

delayχi = Tslot · waitingSlotsχi · interf
χ
i + Tslot · chunksχi + remainingT imeχi (2.1d)

DELAY χ
i,f = (Dχ

i,f/Dslot) · Tslot (4.1)

Problem constraints Ordering fragments is similar to ordering exec phases. Hence, equa-
tion (2.5c) is duplicated into (4.2) but now targets fragments instead. When aχψ(i,f),(j,g) = 1 then

τχ(i,f) is scheduled before τψ(j,g).

∀(i, j) ∈ T × T ; i 6= j, {X,Y } ∈ {{r, r}, {w,w}, {r, w}}, f ∈ FXi , g ∈ F Yj ;
aXY(i,f),(j,g) + aXY(j,g),(i,f) = 1

(4.2)

In Equation (4.2), no equation forces to have the same ordering between exec phases than
between read phases. The same remark applies to exec phases and write phases.

Absence of overlapping Equation (4.3) applies the ordering from the previous decision vari-
able aχψ(i,f),(j,g). It forbids to have more than one active DMA request at a time to produce
contention-free schedules. This equation is adapted from equation (2.7) which forbids more
than one activated exec phase at a time per core.

∀(i, j) ∈ T × T ; i 6= j, {X,Y } ∈ {{r, r}, {w,w}, {r, w}}, f ∈ FXi , g ∈ F Yj ;
ρX(i,f) +DELAY X

(i,f) ≤ ρ
Y
(j,g) +M (1− aXY(i,f),(j,g))

(4.3)

Equation (4.3) must be activated only if the two elements are scheduled in a specific order.
Thus, a nullification method is applied using of a big-M notation [GNS09], detailed in Chapter
2, see equation (2.3).

Read-exec-write semantics constraints Equations (4.4a) and (4.4b) constrain the order of
all phases of a task to be read phase, then exec phase, then write phase. But in contrast
to Chapter 2, these phases will not necessarily be scheduled contiguously – i.e. replacing
previous equations (2.6a) and (2.6b). The start date of the exec phase of task i (ρei) must be
some time after the completion of all read fragments (start of read fragment ρr(i,f) + latency
DELAY r

(i,f)). Similarly, each write fragment (ρw(i,f)) starts some time after the end of the exec
phase (start of exec phase ρei + WCET Ci).
∀i ∈ T,

∀f ∈ F ri , ρei ≥ ρr(i,f) +DELAY r
(i,f) (4.4a)

77

Hiding communication latencies in contention-free schedules

∀f ∈ Fwi , ρw(i,f) ≥ ρ
e
i + Ci (4.4b)

Data dependencies in the task graph To enforce data dependencies, equation (4.5) re-
places equation (2.8) from Chapter 2. It constraints all read fragments to start after the com-
pletion of all their respective predecessors. For a read fragment its direct predecessor is the
write fragment of the task that produced the corresponding data.

∀i ∈ T,
∀f ∈ F ri ,∀(j, g) ∈ pred(i, f);
ρw(j,g) +DELAY w

(j,g) ≤ ρ
r
(i,f)

(4.5)

Assigning SPM region Mapping phases to region, and mapping tasks to cores are analo-
gous. Equations (4.6a) & (4.6b) force every element (exec phase and fragments) from task i to
be mapped on one and only one region z. These two equations mirror the integer variable pi,c
from equation (2.5a) to map a task on a core.∑

z∈R
spmpz,i = 1 (4.6a)

f ∈ F, i = task(f);
∑
z∈R

spmpz,(i,f) = 1 (4.6b)

Equations (4.7a) and (4.7b) set the size (spmsrcz) of region z on core c to be the largest
amount of data that will be stored in it. The data stored by an exec phase includes both code
(CSt) and local data (SSt, stack data). The data stored by a read or write fragment (DX

(i,f))
includes all data consumed (or produced) by a task from one predecessor (or one successor).
To store data into a given region of a core, both mapping variables for the region spmpXz,(i,f) and
the core pi,c must be set to 1.
∀c ∈ P,∀z ∈ R,∀i ∈ T,

spmsrcz ≥ (SSi + CSi) (spmpz,i ∧ pi,c) (4.7a)

∀χ ∈ {r, w}, ∀f ∈ Fχi ; spmsrcz ≥ Dχ
(i,f) (spmpz,(i,f) ∧ pi,c) (4.7b)

Equation (4.8) limits the sum of size for each region for a core to the available size of the
SPM.

∀c ∈ P,∑
z∈R

spmsrcz ≤ SPMSIZE (4.8)

78

4.5. Non-blocking contention-free scheduling techniques

Delimiting the usage time of a region by an element relies on Definitions 1, 2 and 3. Equation
(4.9a) sets the allocation start time σ(i,f) of the read fragment f from task τi to be equal to its
schedule start time and the allocation end time ω(i,f) to be the end of the exec phase. Equation
(4.9b) forces the lifetime of the region used by the exec phase to be the whole duration of the
schedule (recall that Θ represents the overall makespan). Equation (4.9c) sets the allocation
start time σ(i,f) of the write fragment f from task i equal to the beginning of the exec phase and
the allocation end time ω(i,f) equal to its arrival time.
∀i ∈ T

∀f ∈ F ri ; σ(i,f) = ρr(i,f) and ωi = ρei + Ci (4.9a)

σi = 0 and ωi = Θ (4.9b)

∀f ∈ Fwi ; σ(i,f) = ρei and ω(i,f) = ρw(i,f) +DELAY w
(i,f) (4.9c)

Mapping elements (exec phases and communication fragments) to SPM region is very sim-
ilar to mapping tasks on cores. Therefore, following equations (4.10a), (4.10b), (4.10c) and
(4.10d) mimic the behaviour of respectively (2.5b), (2.5c), (2.5d) and (2.7) by replacing vari-
ables mi,j , ai,j and ami,j with spmmi,j , spmai,j and spmami,j . As a reminder, (4.10a) detects
if two fragments are assigned to the same region from the same core, (4.10b) represents the
causality of a fragment compare to another, and (4.10c) represents this causality on the same
region. Finally, (4.10d) imposes the mutual exclusion of the reservation time .
∀(f, g) ∈ F × F, f 6= g, i = task(f), j = task(g)

spmm(i,f),(j,g) =
∑
z∈R

(mi,j ∧ spmpz,(i,f) ∧ spmpz,(j,g)) (4.10a)

spma(i,f) + spma(j,g) = 1 (4.10b)

spmam(i,f),(j,g) = spma(i,f) ∧ spmm(i,j),(j,g) (4.10c)

ω(i,f) ≤ σ(j,g) +M (1− spmam(i,f),(j,g)) (4.10d)

4.5.2 Forward List Scheduling algorithm

This section details the modification added to the heuristic algorithm presented in Chapter
2. It now integrates the non-blocking and fragmented communication at schedule time with the
SPM phase-to-region mapping scheme discussed in Section 4.4.

79

Hiding communication latencies in contention-free schedules

P1
A

B

D

EP2

C

0 10 20

Bus usage

Bus usage
2

A
1

1

D
1

B
1

1 1

E
1

C
1
2

P3
Bus usage

2

A
2

2

B
2

2

H
1

Figure 4.4 – Partial schedule of the task graph from Figure 4.2 with a DFS sorting strategy in
the heuristic algorithm.

New sorting algorithm In addition to the framework presented in Chapter 2, this heuristic
adds a third sorting algorithm for scheduled elements (tasks+fragments). The new sorting
algorithm is a modification of the vanilla Depth First Search (DFS) that delays read fragments
in the Qready list. The purpose is to avoid too early reading that might delay other fragments
in the schedule. When constructing the Qready list from Figure 4.2 with a DFS exploration,

With a DFS exploration of Figure 4.2 and starting with task B, the Qready list extracted can
look like: Qready = (τ eB, τw(B,1), τ

r
(E,1), τ

e
E , τ

w
(E,1), τ

r
(H,3), τ

w
(B,2), τ

r
(H,1), τ

e
A, τ

w
(A,2), τ

r
(D,1), τ

e
D, . . .). This

would result in the partial schedule from Figure 4.4 (some of the listed fragment do not appear
in the figure as they are placed later on the time line schedule). In this example, fragments τwB,2
and τ r(H,1) are scheduled before fragments from task A, task C and task D, with the conse-
quence of retarding the beginning of these tasks. But τ eH cannot be scheduled right after τ r(H,1)
due to other dependencies with task E and task C. Thus, the delay imposed to task C and D
should be avoided.

This new sorting strategy postpones the insertion τw(B,2) and τ r(H,1) in the Qready list. The
DFS with delay sorting algorithm inserts τ r(H,1) as soon as all its siblings (τ r(H,2) and τ r(H,3)) are
eligible for insertion (preceding fragments are in Qready). Moreover, it inserts τw(B,2) in Qready
as soon as τ r(H,1) is eligible for insertion as well.

This leaves three sorting algorithms which are evaluated in Section 4.6.4 i) vanilla DFS,
ii) vanilla Breadth First Search (BFS), and iii) DFS with delayed fragments. Nevertheless, no
sorting algorithms outperform the other, because ordering is a topic on its own, the heuris-
tic generates three schedule versions and selects the one with the shortest schedule length.
Section 4.6.4 gives some hints to motivate three versions.

Forward list scheduling with non-blocking fragmented communications and SPM phase-
to-region mapping Following the principle from previous Section 2.3.3, the forward list schedul-
ing algorithm orders scheduled elements (line 3), then schedules them one by one as soon as
possible (lines 6-23) without backtracking in order to minimise the overall makespan. If the ele-
ment to schedule is a fragment (line 9), then there is no need to map it on a core, but it must be
scheduled to avoid interference. If it is an exec phase, then a core is selected and the mapping
minimises the overall makespan (line 16).

SPM regions can be assigned to a task, only once all its phases are properly scheduled

80

4.5. Non-blocking contention-free scheduling techniques

ALGORITHM 4.5.1: Forward list scheduling
Input : A task graph G = (T,E) and a set of processors P
Output : A schedule

1 Function ListSchedule(G = (T,E), P)
2 Elist← BuildListElement(G)
3 Qready← TopologicalSortNode(Elist)
4 Qdone← ∅
5 schedule← ∅
6 while elt ∈ Qready do
7 Qready← Qready \{elt}
8 Qdone← Qdone ∪{elt}
9 if elt is a read fragment ∨ elt is a write fragment then

10 ScheduleElement(Qdone, elt, null)
11 else if elt is an exec phase then

/* tmpSched contains the best schedule for the current task */
12 tmpSched← schedule with makespan =∞
13 foreach p ∈ P do
14 copy ← schedule
15 ScheduleElement(Qdone, elt, p)
16 tmpSched← minmakespan(tmpSched, copy)
17 schedule← tmpSched

18 if all fragments and exec phase of the task i containing elt are in Qdone then
19 AssignRegion(schedule, Qdone, τe

i , SSt + CSt, 0, infinity)
20 foreach f ∈ F r

i do
21 AssignRegion(schedule, Qdone, f,Dr

(i,f), ρ
r
(i,f), ρ

e
i + Ci)

22 foreach f ∈ Fw
i do

23 AssignRegion(schedule, Qdone, f, ρe
i , ρ

w
(i,f) +DELAY w

(i,f))

24 return schedule

ALGORITHM 4.5.2: Build list scheduled element
Input : A task graph G = (T,E)
Output : A list

1 Function BuildListElement(G = (T,E))
2 return {F r

i ∪ τe
i ∪ Fw

i |i ∈ T}

and mapped to a core (lines 19-23). When scheduling the read fragments, the core mapping
information are not yet available. Additionally, when mapping the exec phase, we still do not
have the information regarding the write fragments that have not been scheduled yet. While as-
signing the region (lines 19-23), the exec is allocated into a region first, then the communication
phases. This order is motivated to better handle resident code in SPM and avoid SPM space
to be stolen by communication fragments. For example, if there are 5 units of free space (not
assigned yet) and the exec phase needs 5 units while two fragments need 2 units each, then
the task can be mapped. The exec phase will take the remaining free space, while the commu-
nication fragments can share an already created but available (in time) region (see Definitions

81

Hiding communication latencies in contention-free schedules

1 and 3).

ALGORITHM 4.5.3: Schedule an element
Input : the list of scheduled element, the current element to schedule, the current core or null if

the element is a fragment
Output :

1 Function ScheduleElement(Qdone, cur_elt)
/* wct → Worst-Case Timing, DELAY α

β or Cβ */
/* X and Y depend on the type of the corresponding element */

2 ρX
cur_elt ← maxp∈pred(cur_elt)(ρY

p + wctp)
3 foreach e ∈ Qdone do
4 if cur_elt is a fragment and e is not a fragment
5 ∨ cur_elt is an exec phase and e is not an exec phase
6 ∨ cur_elt is an exec phase and e is not mapped on core cur_proc then
7 continue

8 if are_OL(e, cur_elt) then
9 ρX

cur_elt ← ρY
e + wcte

Scheduling an element In this version, scheduled elements include both all fragments and
exec phases, as shown by Algorithm 4.5.2.

Algorithm 4.5.3 sketches the method to determine the start time of the considered element.
First, each element must start after its causal predecessors (line: 2) Then, lines 3-9 enforce
that no exec phase executes on the same core at the same time, and that no core accesses
the bus at the same time (line 8).

ALGORITHM 4.5.4: Allocate a SPM region to a phase
Input : A schedule, the list of scheduled element, the current task and properties of the phase to

map on a region
Output : A schedule

1 Function AssignRegion(cur_elt, data, start, end)
2 if data == 0 then return
3 proc←get the core on which the task containing cur_elt is mapped to
4 existing ← Build the set of existing regions on core proc where : size ≥ data ∧ last reservation

time ends before start
5 if existing 6= ∅ then
6 Assign the smallest existing region to cur_elt
7 else if free SPM size in proc ≥ data then
8 Create new SPM region for cur_elt on proc with size data where the reservation time is

[start; end]
9 else

10 Throw Unschedulable

Allocation of SPM regions Algorithm 4.5.4 associates a SPM region to an element (exec
phase, fragment). If there is data to store in the SPM (line 2), then it first tries to reuse an

82

4.6. Experiments

existing region (lines 4-6), thus minimising the required memory size. If no existing region can
be shared, then a new one is created (lines 7-8). Sharing a region imposes that the selected
region is big enough to handle the current amount of data and free for use at the required time
interval (line 4).

4.6 Experiments

This chapter presented a modification of the ILP formulation and the heuristic algorithm
from Chapter 2. Therefore, the first presented experiments aim at validating the quality of the
new approximate algorithm against the ILP formulation, as in previous experiments Section 2.4.
Then, an empirical evaluation shows the benefits of non-blocking fragmented communication
using the presented heuristic algorithm. The default fragmentation scheme is questioned to
determine if finer fragmentation modes further increase the gain. Finally, the three sorting
algorithms employed by the approximate algorithm are compared.

Experiments were conducted on real codes, in the form of the open-source refactored
StreamIT [TKA02] benchmark suite: STR2RTS [RP17], as well as on synthetic task graphs
generated using the TGFF [DRW98] graph generator.

Applications from the STR2RTS benchmark suite are modelled using fork-join graphs and
come with timing estimates for each task and amount of data exchanged between them. We
were not able to use all the benchmarks and applications provided in the suite for the very same
reasons than in Section 3.4 (pre-requisite information extraction, linear chains of tasks, . . .). A
table summarising the used benchmarks is available in appendix (page 94).

The identical STG task graphs set from Chapter 2 is reused. Table 4.3 reminds the resulting
parameters of the task set with the addition of two columns: i) the code size range for each task,
ii) and their local storage size range.

Table 4.3 – Task graph parameters for synthetic task graphs

#Task
graphs

#Tasks Width WCET
Amount of

bytes exchanged
Code
size

Local
size

<min,max,avg>
STG 50 5, 69, 22 3, 17, 8 [5; 6000[[0; 192] [3; 3920[[1; 60]

As previously, all reported experiments have been conducted on several nodes from an
heterogeneous computing grid with 138 computing nodes (1700 cores). Because Chapter 2 in
Section 2.4.3 showed that the value of Tslot has a little impact on the schedule makespan, but
it is rather better to keep it small, in all experiments Tslot = 3 as in [KHM+13]. The transfer rate
is one word (4 bytes) per time unit.

4.6.1 Quality of the heuristic compared to the ILP

The following experiments aim at quantifying the over-approximation induced by the heuris-
tic algorithm in the same manner than in Section 2.4.2. This gap is still expected to be small.
Again, this experiment employs the STG task set with number of varying in ∈ {2, 4, 8, 12}. The
heuristic is still implemented in C++ and CPLEX was configured with a timeout of 11 hours.

83

Hiding communication latencies in contention-free schedules

For each graph, we varied the number of cores in {2, 4, 8, 12} and the sizes of the SPM vary
in {2KB, 4KB}. SPM sizes allow to cover three situations i) all test-cases fit in the SPM (4KB
size), ii) some test-cases do not entirely fit in SPM (2KB size), iii) some test-cases are too large,
hence unschedulable (2KB size, biggest benchmarks).

Table 4.4 – Degradation of the heuristic compared to the ILP on the synthetic task-graphs

% of exact results degradation
(ILP only) <min,max,avg> %

68% 0%, 20%, 3%

Table 4.4 presents the combined results for all different configurations. First, it shows the
number of optimal (including unfeasible) results the ILP solver is able to find in the given time-
out – 68%. The remaining 32% includes all other cases where the solver reaches the timeout
without neither an optimal solution nor an infeasibility verdict. Then Table 4.4 presents the min-
imum/maximum and average degradation induced by the heuristic over the ILP. As displayed,
the average degradation is low thus showing the quality of our heuristic.

[0
;1

[

[1
;2

[

[2
;3

[

[3
;4

[

[4
;5

[

[5
;6

[

[6
;7

[

[7
;8

[

[8
;9

[

[9
;1

0
[

[1
0

;1
5

[

[1
5

;2
0

[

[2
0

;1
0

0
[

0

20

40

60

80

100

120

140

160

180

200
178

0 5 4 4 3
13 10

1 5 5 2 2

% range of degradation

N
U

m
b

e
r

o
f g

ra
p

h
s

Figure 4.5 – Distribution degradation heuristic vs ILP (232 test-cases)

Figure 4.5 presents the degradation of the heuristic compared to the ILP. Most of the results
(77%) have a degradation below 1%. For all cases we investigated, the degradation is due to
the topological order at the beginning of the heuristic and the non-backtracking policy implied
by forward-list-scheduling technique. In addition, we have 10% (40 graphs) of the test-cases
for which the ILP is able to find an optimal solution whereas the heuristic answer is unfeasible
(no schedule found due to lack of SPM memory space). Again, this comes from the non-
backtracking policy of forward-list-scheduling technique.

4.6.2 Blocking vs non-blocking communications

Further experiments rely only on the heuristic as most task-graphs from STR2RTS bench-
mark suite are too large to be scheduled using the ILP solver in reasonable time. To compare

84

4.6. Experiments

the benefit of hiding communication latency, the method must be opposed to a scheduler that
does not hide it. We preferred to modify our heuristic to implement both the blocking and non-
blocking methods instead of reusing a state-of-the-art algorithm. The main reason, as detailed
in Section 4.7, is that related work have characteristics that are hardly compatible with our
proposal: different task model [TMW+16], SPM big enough to store all code/data [BDN+16;
RDP17], lack of information on SPM management [BMD+18], different interconnect [DFG+14].
Another reason for this choice is to guarantee that the deviation between the results from the
two communication modes will not be affected by any other technical implementation decision
(e.g.: sorting algorithm).

To summarise the modifications applied to the heuristic in order to get the blocking mode:
i) we forbid to have more than one phase active at a time (both communication and computa-
tion as in the example of Figure 4.3a) ii) we do not fragment communications. As previously,
we varied the number of cores in {2, 4, 8, 12}, and the SPM sizes in {4KB, 2MB} (2MB is the
SMEM size in one cluster of the Kalray MPPA [DVP+14]). All aforementioned three situations
regarding the SPM size are covered with these configurations. Note that STR2RTS bench-
marks are larger in term of memory space than synthetic benchmarks. We then calculate the
gain of the non-blocking mode versus the blocking mode that we expect to be positive.

gain = blocking −NONBlocking
blocking

∗ 100 (4.11)

Aud
io

be
am

Bea
m

For
m

er

Bito
ni

cS
or

t

DCTve
rif

y
FFT2

FFT3
FFT4

FFT5

FIR
Ban

k

FM
Rad

io

Filte
rB

an
kN

ew
M

P3

M
at

rix
M

ul
tB

lo
ck

Ser
pe

nt

dc
al

c

iD
CTco

m
pa

re

pe
rft

es
t

td
e_

pp

0

2

4

6

8

10

12

14

16

18

2c - 4KB

2c – 2MB
4c – 4KB

4c – 2MB

8c – 4KB
8c – 2MB

12c – 4KB

12c – 2MB

G
a

in
 in

 %

X X

X Unschedulable

Figure 4.6 – Gain of non-blocking communications over blocking on STR2RTS benchmarks per
cores/SPM configuration – avg: 4%

Figure 4.6 presents the average gain per benchmark for all configurations (computed using
Equation (4.11)), e.g. 2c-2MB stands for 2-cores and SPM size of 2MB. The maximum gain is
16% (FIRBank on 2 cores with 2MB SPM), whereas the average is 4%.

Figure 4.6 shows that some benchmarks are unschedulable for some configurations, e.g.
FFT2 with 2c-4KB. This comes from a lack of SPM space to place all code and all data. This
might be relaxed with code pre-fetching in read phase, which is left for future work.

Lower gains are observed when the amount of parallelism is low due to the lack of op-
portunity to hide communications. For example, Serpent is a chain of fork-joins containing 2
concurrent tasks only, as opposed to FIRBank which includes only one fork-join construct with
several long chains of tasks. In addition, higher gains are observed on hardware configurations
with lower number of cores – i.e. 6% on average with 2-cores as opposed to 4% with 12-cores.

85

Hiding communication latencies in contention-free schedules

4KB 2MB 4KB 2MB 4KB 2MB 4KB 2MB
0

2

4

6

8

10

12

14

16

18

4KB 2MB 4KB 2MB 4KB 2MB 4KB 2MB
0

2

4

6

8

10

12

14

16

18

SPM size

Nb cores 2 4 8 12

Figure 4.7 – Gain of non-blocking communications over blocking on TGFF benchmarks – aver-
age: 8%

To evaluate the impact of graph shapes on gains, we experimented our heuristic technique
on synthetic task graphs, the ones used previously to validate the heuristic. In contrast to
STR2RTS graphs, that are fork-join graphs, synthetic task graphs are arbitrary graphs. Results
are depicted in Figure 4.7. We observe that arbitrary graphs offer more opportunities to hide
communication, with an average gain of 8% in total.

4.6.3 Impact of fragmentation strategy

Through the chapter, we have split read /write phases according to tasks dependencies (one
fragment per edge in the task). We experimented with two more fine-grain splitting strategies:

— splitting by Dslot: each fragment will fit in a Tslot bus period, each transmitting Dslot bytes
– a task transmitting 5 floats (20 bytes) with a Tslot ∗ Dslot of 3 ∗ 4 bytes per request will
result to 2 fragments, generating 2 communications.

— splitting by data-type unit (DTU): an application exchanging only floats will have a DTU of
1 float (4 bytes). If a task produces 5 floats, then there is 5 fragments.

We conducted the experiments by applying our heuristic on the STR2RTS benchmarks, with
the very same experimental setup as before. We include in the comparison scheduling in non-
blocking mode without communication fragmentation (label no frag in Figure 4.8). We expect
the gain to increase as the fragment granularity gets smaller.

Figure 4.8 presents the results with four granularities: no frag, edge (default configuration),
Dslot (12 bytes) and DTU (4 bytes). Fragmenting communications always result in shorter
schedules than the no frag configuration. In addition, in most cases the smaller granularity
results in higher gains. However the better the results are, the higher the schedule generation
time is, as given in the legend of the figure. Schedules are generated in less than 1 second on
average for no frag and edge, whereas several minutes are required on average for fine-grain
fragments.

To validate our theory on a real platform, we successfully implemented schedules gener-
ated with our heuristic targeting one cluster of a Kalray MPPA Bostan platform [DVP+14]. The

86

4.6. Experiments

4KB 2MB 4KB 2MB 4KB 2MB 4KB 2MB
0

1

2

3

4

5

6

7

no frag
< 1s
edge
< 1s
Dslot
> 5min

DTU
< 4min

G
a

in
 in

 %

SPM size

Nb cores 2 4 8 12

Figure 4.8 – Average gain of non-blocking schedule length over blocking one depending on
fragmentation strategy

final code is largely auto-generated (only the code of the exec phase of each task has to be
inserted manually in the generated code). At the time of writing, we managed to run benchmark
BeamFormer_12ch_4b from the STR2RTS benchmark suite [RP17]. This benchmark is made
of 56 tasks with a DAG width of 12.

A master core, in the cluster, is reserved to act as a software DMA engine as in [CLC+09].
Then the thread on that core contains the statically generated sequential schedule of read /write
phases only. This ensures a contention-free scenario to access the memory (no read and write
can be concurrently active), and emulate the behaviour of a hardware DMA engine that acts on
behalf of other computing cores.

We were able to generate the following versions of the benchmark:

— blocking mode (Sbl),

— non-blocking mode without communication fragmentation (Snbl),

— non-blocking mode with fragmentation by edges (Sedgenbl),

— non-blocking mode with fragmentation by Dslot (12 bytes) (Sdslotnbl),

— non-blocking mode with fragmentation by DTU, fragment size: 4-bytes (1 float) (Sdtunbl).

In terms of implementation overheads, there is no overhead to set up the software imple-
mented DMA at run-time, since channel connectors are initialised only once at application start.
A jitter of 32 cycles due to the scheduling of communication and execution phases is taken into
account.

For this experiments, WCETs of computations and communications were estimated using
measurements, adding an arbitrarily chosen margin of 20% for safety. Taking into account
implementation overheads, as expected, the overall schedule makespans are: Sbl > Snbl >
Sdslotnbl > Sedgenbl . The gain of Snbl schedule over the Sbl schedule is 1%, the gain of Sedgenbl schedule
over the Snbl schedule is 36%, and the gain of Sdslotn bl over Snbl is 22%.

However, the finer fragmentation policy suffers from an overhead on this platform. The
degradation of Sdtunbl over Sedgenbl is 24%. The source of this overhead mainly originates from

87

Hiding communication latencies in contention-free schedules

read phases measured time where reading one float takes as much time as reading four floats.
Nevertheless, we observe a small decrease in write phases measured time depending on the
amount of data exchanged (approximately 1000 cycles on average).

4.6.4 Impact of topological sorting algorithm

In the heuristic, Algorithm 4.5.1, we first build a sorted list of all elements to be scheduled
(execution phases+fragments). As mentioned before, we use three different topological sorting
algorithms: i) a vanilla DFS, ii) a DFS with delayed fragments, iii) a vanilla BFS. We could not
find one sorting algorithm outperforming the others for all graphs and configurations (number
of cores, SPM size). Using the same experimental setup as before, we observed an average
difference in the schedule makespan of 3% with a maximum of 18%.

4.7 Related Work

Accessing the global shared memory has always been the performance bottleneck. To
overcome this issue, a prefetching mechanism brings data/instructions closer to the processor
before it is actually needed. Hardware prefetchers will speculatively request data or instructions
based on access pattern [Mic16]. Software prefetchers give control to the developer or compiler
to introspect the code by adding prefetching instructions [KL91]. Hybrid prefetchers usually use
helper-threads to prefetch data and some synchronisation hardware support [KST11]. In this
chapter we propose a software prefetcher that adds prefetching based on a schedule generated
off-line.

Most of other works considering SPM aim at deciding what should be stored into the SPM
and when to evict data, and in cases some information cannot be stored in SPM it stays in main
memory. Considered metrics for SPM allocation are average-case performance [DHC+13;
LXK10], power consumption [TTT10], WCET [DP07], schedule makespan [BMD+18]. In con-
trast to these studies, our work, in order to control resource contention, requires all information
to be stored in SPM.

Wasly and Pellizzoni [WP13] add a hardware component to manage the SPM, a Real-Time
Scratchpad Memory Unit (RSMU). This RSMU acts similarly as a traditional Memory Manage-
ment Unit (MMU) except it will also use a previously computed schedule for loads/unloads of
code/data from mixed-critical tasks. To use our method, no specific hardware component needs
to be added ; only a DMA engine that we believe to be quite common nowadays. In addition,
we do not account for mixed-critical tasks. Giorgi et al. [GPP09] introspect the code to add
the RSMU behavior in order to prefetch global data from the global external memory into a
local memory on many-core tiled architecture. They modified the compiler to isolate load into
specific basic blocks and added synchronisation mechanism (before the usage of the data) to
block the thread if the mandatory data are not ready for use. However their study do not include
any real-time guarantee on the blocking time of the threads. We can guarantee the data will be
ready for use without blocking time.

Kim et al. [KBC+14] present an algorithm to map a function to a specific SPM region, that
inspired our phase to region mapping step. They aim at storing the basic blocks into the SPM

88

4.7. Related Work

in order to improve the WCET of an application on a single-core. We improve their work to map
multiple tasks on multi-cores.

Che et al. [CC11] schedule stream applications on SPM-based single-core architectures.
They also split the SPM in region but with specific purposes. One region is reserved for libraries
and global data, one region per task, two regions for the stack and the head and one more used
as exchanged buffer for inter-tasks communication.

Cheng et al. [CCR+17] derive a speed-up and a resource augmentation factors when parti-
tioning memory banks with minimum interference. At the opposite we have a complete off-line
schedule with phase to region allocation on single bank SPM memory.

On a single-core, using PREM, Soliman et al. [SP17] hide the communication latency at
a the basic-block level. They modify the compiler toolchain LLVM to hide this latency while
other parts of the code are executing. Wastly and Pellizzoni [WP14] proposed to dynamically
co-schedule, without preemption, DMA accesses and sporadic tasks on a SPM-based single-
core. The SPM is split in 2 parts: one assigned to the currently executing task, while the other
load information for the next scheduled task. Our work makes a better use of the SPM by
allowing more than two regions alive at the same time. This last work has been extended to
multi-core in [AWP15].

In order to reduce the impact of communication delays on schedules, [GTK+02; CLC+09]
hide the communication request while a computation task is running. This accounts with the
asynchronism implied by DMA requests. However they use a worst-case contention. And
neither SPM management nor fragmented communication are employed in this article.

The technique proposed in [BMD+18] generates contention-free off-line schedules with pe-
riodic dependant tasks. Dealing with the SPM, they aim at deciding if a task should be resident
in SPM or be fetched before each execution from the global memory. Unfortunately they do not
provide information on SPM allocation, raising questions about address allocation and SPM
fragmentation. With our region allocation scheme, SPMs are allocated while managing frag-
mentation is proposed.

A technique to hide transfers behind calculations is presented in [TMW+16]. Similarly to
[WP14] and [AWP15], the SPM is split in two regions, one used by the application while the
other is being loaded. Our work differs from the work in [TMW+16] by the task model under use
(dependant tasks in our work, sporadic independent tasks in their work). Moreover, our work
make better use of SPM by allowing more than two SPM regions to be alive simultaneously.

Kudlure et al [KM08] created a full compilation chain including partitioning, mapping, schedul-
ing, buffer allocation while hiding memory latencies. To hide memory access latencies, they
benefit from pipelining mechanism which allows to schedule several iterations in a time win-
dow. Thus, the communication initiated jobs of an iteration are hidden under the execution
of jobs from next iterations. In our work, communication are fragmented and hidden under
computation of the same iteration.

The work presented in [DFG+14] proposes an off-line scheduling scheme for flight man-
agement systems using a PREM-like task model. The proposed schedule avoid interferences
to access the communication medium. However, in contrast to our work, there are still interfer-
ences in their schedule, due to communications between tasks assigned to different cores.

Other works very close to our research, such as [KM08; CLC+09; TPG+14; SS17], statically
schedule applications represented by SDF with some form of buffer checking. However, they
do not use the PREM/AER model like us [TPG+14; SS17], and none of them fragment the

89

Hiding communication latencies in contention-free schedules

communications, which allows us to drastically increase the hiding opportunities.

4.8 Conclusion

This chapter showed how to minimise the impact of the communication latency when map-
ping/scheduling a task graph on a multi-core, by overlapping communications and computa-
tions. We also argued that this kind of technique should always be coupled with a memory
allocation scheme to guarantee the integrity of the accessed data. The presented approach
fragments communication to increase the possibility of overlapping them with computation,
which we use to define a mapping/scheduling mapping strategy. This strategy is implemented
in an ILP formulation that formally describes the solved problem, and with an approximate al-
gorithm that solves the problem faster. The empirical evaluation demonstrates the validity of
the heuristic algorithm by showing that the over-approximation, induced by such technique,
remains low (3% in average). Then, the experimental results show that, compared to a sce-
nario not overlapping communications and computations, this approach improves the schedule
makespan by 4% on average on streaming applications (8% on synthetic task graphs). Nev-
ertheless, experiments also show that allowing different fragmentation strategies can further
increase the gain when avoiding small transfer overhead, up to 6.5% with streaming applica-
tions. In addition, we evaluated different sorting algorithm within our heuristic, but could not find
one that outperforms the other.

This conclusion, regarding smaller size fragmentation, must be balanced with the context
of this dissertation. We did not include an overhead for the creation and transfer of fragments.
When dealing with a real system, and not just an abstraction, overheads must be added for the
creation of the fragment, for the time-triggered implementation of the schedule and for possible
other DMA costs. However, this cost is constant and can be added to the computation of
the delay. In order to validate our theory on a physical system, we successfully implemented
schedules generated with our heuristic algorithm targeting one cluster of a Kalray MPPA Bostan
platform [DVP+14]. Implementation details are available in the publication containing the full
study from this chapter [RSD+19]. On this real platform, the observed gain for the fragmentation
by edge, Dslot and DTU over non-blocking and non-fragmented schedules are respectively:
36%, 22%, and 24%.

The code of this scheduler using both techniques (ILP, heuristic) with fragmented and hid-
den communication is available at https://gitlab.inria.fr/brouxel/methane. Also, the
code generated for the Kalray MPPA is available in the resource folder of the same project.

90

https://gitlab.inria.fr/brouxel/methane

CONCLUSION

Designing a hard real-time system requires more attention and strict guarantees, especially
on timing constraints, than any other systems. To enforce the strongest guarantees, this worst-
case performance is computed a priori with, among other analyses, static WCET estimations,
and static scheduling policies. Multi-core platforms are a very attractive solution to implement
hard real-time systems. When specifically designed with predictability in mind, they provide
both performance and the ability to devise tight worst-case performance. Moreover, parallel
applications provide means to fully exploit all available resources within multi-core architec-
tures. The best representation for parallel applications explicitly provides both dependency and
concurrency between tasks, as these information are mandatory to compute tight worst-case
performance on multi-core hardware in a static manner. To run a parallel application on a multi-
core architecture, a scheduling policy describes on which core and when tasks is executed.

This dissertation presents two static scheduling methods to optimise the global performance
of given application while enforcing strong temporal constraints. Both can be classified as static
partitioned and non-pre-emptive. The implementation of all proposed scheduling strategies
include both an ILP formulation and a heuristic algorithm loosely based on greedy heuristic
similar to list scheduling. ILP formulations provide a non ambiguous description of the problem
under study, and is also used as a baseline to evaluate the quality of our proposed heuristic
algorithm. Our scheduling strategies target multi-core platforms in which cores use a bus based
interconnect arbitrated with a FAIR-RR policy. Each core is also assumed to have access to a
local private memory, which is a SPM. We consider parallel applications represented as acyclic
task graphs. To take advantage of the SPM-based architecture, we employ an execution model
where memory accesses are isolated from computation phases, following the AER [MNP+16]
principle. This separation allows us to first read input data from the global memory to the
SPM, then execute the code without interferences with other cores, and finally write back the
produced data from the SPM to the external memory. In our approach, communicating tasks
are assumed, in the whole document, to only transfer data through the main memory (SPM to
SPM communication are not considered). We first restrict ourself to blocking communications
in Chapters 2 and 3, and show how to support non-blocking communications in Chapter 4. In
essence, the goal of this work is to minimise the impact of these communications on the overall
schedule makespan of the application.

With multi-core architectures, several cores can access the shared bus at the same time in-
stant. Therefore computing transfer latencies, between cores and the off-chip memory through
the bus, must consider a contention delay, which usually depends on the number of contending
cores. The computation of communication latencies in Chapter 2 used a worst-case contention
delay, which always considers that all other cores may also access the shared bus, at the
same time instant. Even if very pessimistic, this provides a baseline against which we compare
when dealing with contention awareness in Chapter 3. Empirical evaluation shows that solving
scheduling problem while looking for an exact optimum does not scale with large problems (as
expected). For test cases involving a large number of tasks, the only way to obtain a solution
it to rely on an approximate method. Then, an empirical evaluation, in Section 2.4.3, shows

91

Conclusion

that specific bus parameter Tslot, in a FAIR Round-Robin bus, has a negligible impact over the
schedule length.

The worst-case contention model is a safe choice by construction, but it leads to a large
over-approximation which is then refined in Chapter 3. In this chapter, our proposed schedul-
ing method uses the knowledge of the application structure and the knowledge of the currently
considered schedule to refine, at design time and for each communication phase, the effective
worst-case amount of interferences. This method is shown to be effective with the empirical
evaluation from Section 3.4, where we show an average improvement of 59% over the worst-
case scenario. However, experiments also show that, in most cases, allowing the scheduler to
choose between contention-free and contention-aware scheduling methods results in sched-
ules free from contention. This observation must, however, be put in perspective with the fact
that we only consider task graph with AER semantics.

To further refine the contention delay, the contribution in Chapter 4 describes a static
scheduling method that generates contention-free schedules with non-blocking communica-
tions. The scheduler takes advantage of DMA transfers and a dual-ported SPM to hide bus ac-
cesses while the processing unit is busy with computations. We also show that this kind of tech-
nique should always be coupled with a memory allocation scheme to guarantee the integrity
of the accessed data. The presented approach fragments communications to increase the op-
portunities of overlapping them with computation. The empirical evaluation demonstrates that,
compared to a scenario without overlapping, this approach improves the schedule makespan
by 4% on average on streaming applications (8% on synthetic task graphs). Nevertheless, ex-
periments also show that allowing different fragmentation strategies can further increase the
gain when avoiding small transfer overhead, up to 6.5% with streaming applications. In ad-
dition, we evaluate different sorting algorithms within our heuristic, but could not find any of
them that outperformed the other. Finally, we successfully implemented a scheduled program
generated with our heuristic algorithm targeting one cluster of a Kalray MPPA Bostan platform
[DVP+14]. On this platform, the observed gain for the fragmentation by edge, Dslot and DTU
over non-blocking and non-fragmented schedules were respectively: 36%, 22%, and 24%. With
gains beyond our expectations, this implementation validates the advantages of our scheduling
strategy.

The whole source code of the scheduler used along this thesis is available at https://
gitlab.inria.fr/brouxel/methane.

Future Work

All good thinks eventually end, so is this dissertation, which leaves room for further improve-
ments.

Our first contribution generates contention-aware schedules in which the effective con-
tention is computed at design time. However this contribution includes an over-approximation
that can be refined to further optimize the overall schedule makespan. Indeed, two commu-
nication phases with partially overlapping worst-case access time do not suffer from interfer-
ences for this entire time interval. It is therefore possible to further refine reduce this over-
approximation, in order to further reduce the schedule length.

Moreover, this work considers only non-pre-emptive scheduling techniques. We believe that

92

https://gitlab.inria.fr/brouxel/methane
https://gitlab.inria.fr/brouxel/methane

Conclusion

our approach could be extended to include pre-emptive schedules. Pre-emptive scheduling
techniques may generate new additional interferences when accessing the code and data for
pre-emptive tasks. Also, the memory allocation scheme needs to be re-evaluated to guarantee
the integrity of the data stored inside the SPM.

This work did not address the problem of off-chip memory accesses, considering DRAM-
based platform. The worst-case access time to data in DRAM banks is impacted by several
factors such as the locality and the DRAM refresh cycles. Different strategies could be exploited
by a scheduler to improve the worst-case access delay of communication phases/fragments.
For example, memory accesses could be scheduled at a time where no extra delay are added
due to DRAM refresh cycles, or the choice of fragmentation could exploit DRAM row locality
and read/write switching of the accesses.

An aspect that could be further explored is fine-grained fragmentation of the data into cat-
egories such as read-only data. This may help in the following way: read-only data used by
multiple tasks deployed on different cores could potentially be loaded simultaneously. Assum-
ing that the architecture is bus based, then if the data is broadcasted on the bus, then multiple
SPM controllers could pick up the data as it is streamed by the DMA engine.

This work addresses scheduling techniques targeting bus-based multi-core architectures.
Because network on chip based many-core architectures are getting more and more attention,
a natural extension of this work would be the inclusion of such interconnect architectures. As
a matter of fact, since network on chip links carry packets, we expect that communication
fragmentation to have even more benefits.

93

Appendices

STR2RTS benchmark suite

Following Table 4.5 characterises used benchmarks from STR2RTS benchmark suite. The
first column presents the number of tasks and the second column the width of the graph. Then,
it gives the average data in bytes sent along all edges. Following is the average memory
footprint of all tasks within a benchmark, it includes the code size and the stack size. Last
column shows average, among all tasks, WCET estimates. All this information are shipped
with the benchmark suite and target a Patmos single core architecture [SBH+15].

Table 4.5 – Benchmarks characteristics

Name #Tasks Width
avg data
(bytes)

average
memory footprint

(bytes)

average
WCET

(time unit)
Audiobeam 20 15 12 B 108 B 41
Beamformer 56 12 18 B 246 B 2718
BitonicSort 122 8 49 B 109 B 30
DCTverify 7 2 513 B 506 B 10045
FFT2 26 2 551 B 2 KB 618
FFT3 82 16 84 B 208 B 120
FFT4 10 2 6 B 32 B 11
FFT5 115 16 52 B 1 KB 38
Firbank 340 12 505 B 2 KB 670
FMRadio 67 20 6 B 191 B 235
FilterbankNew 53 8 35 B 180 B 144
MP3 116 36 3502 B 19 KB 12222
MatrixMultiBlock 23 2 793 B 1 KB 726
Serpent 234 2 1013 B 709 B 922
dcalc 84 4 106 B 685 B 174
IDCTcompare 13 3 454 B 685 B 4557
perftest 16 4 8267 B 21 KB 5269
tde_pp 55 2 25344 B 16 KB 2931

94

BIBLIOGRAPHY

[AB11] Sebastian Altmeyer and Claire Maiza Burguière, « Cache-related preemption de-
lay via useful cache blocks: Survey and redefinition », in: Journal of Systems Ar-
chitecture 57.7 (2011), pp. 707–719 (cit. on p. 33).

[ABD08] James H Anderson, Vasile Bud, and UmaMaheswari C Devi, « An EDF-based
restricted-migration scheduling algorithm for multiprocessor soft real-time sys-
tems », in: Real-Time Systems 38.2 (2008), pp. 85–131 (cit. on p. 31).

[ABJ01] Björn Andersson, Sanjoy Baruah, and Jan Jonsson, « Static-priority scheduling on
multiprocessors », in: Real-Time Systems Symposium, 2001.(RTSS 2001). Pro-
ceedings. 22nd IEEE, IEEE, 2001, pp. 193–202 (cit. on p. 31).

[ABS13] Sahar Abbaspour, Florian Brandner, and Martin Schoeberl, « A time-predictable
stack cache », in: Object/Component/Service-Oriented Real-Time Distributed Com-
puting (ISORC), 2013 IEEE 16th International Symposium on, IEEE, 2013, pp. 1–
8 (cit. on p. 22).

[Ack82] William B. Ackerman, « Data flow languages », in: Computer 2 (1982), pp. 15–25
(cit. on p. 18).

[ADI+15] Sebastian Altmeyer, Robert I Davis, Leandro Indrusiak, Claire Maiza, Vincent
Nelis, and Jan Reineke, « A generic and compositional framework for multicore
response time analysis », in: Proceedings of the 23rd International Conference
on Real Time and Networks Systems, ACM, 2015, pp. 129–138 (cit. on p. 65).

[ADM11] Sebastian Altmeyer, Robert I Davis, and Claire Maiza, « Cache related pre-emption
delay aware response time analysis for fixed priority pre-emptive systems », in:
Real-Time Systems Symposium (RTSS), 2011 IEEE 32nd, IEEE, 2011, pp. 261–
271 (cit. on p. 33).

[AEF+14] Philip Axer, Rolf Ernst, Heiko Falk, Alain Girault, Daniel Grund, Nan Guan, Bengt
Jonsson, Peter Marwedel, Jan Reineke, Christine Rochange, et al., « Building tim-
ing predictable embedded systems », in: ACM Transactions on Embedded Com-
puting Systems (TECS) 13.4 (2014), p. 82 (cit. on p. 24).

[AP14] Ahmed Alhammad and Rodolfo Pellizzoni, « Time-predictable execution of mul-
tithreaded applications on multicore systems », in: Design, Automation and Test
in Europe Conference and Exhibition (DATE), 2014, IEEE, 2014, pp. 1–6 (cit. on
pp. 31, 64, 66).

[AWP15] Ahmed Alhammad, Saud Wasly, and Rodolfo Pellizzoni, « Memory efficient global
scheduling of real-time tasks », in: Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2015 IEEE, IEEE, 2015, pp. 285–296 (cit. on
pp. 25, 89).

[Bak91] Theodore P. Baker, « Stack-based scheduling of realtime processes », in: Real-
Time Systems 3.1 (1991), pp. 67–99 (cit. on p. 33).

95

BIBLIOGRAPHY

[BB08] Sanjoy Baruah and Enrico Bini, « Partitioned scheduling of sporadic task systems:
an ILP-based approach », in: Proceedings of the 2008 Conference on Design and
Architectures for Signal and Image Processing, Citeseer, 2008 (cit. on pp. 12, 30).

[BBY13] Giorgio C Buttazzo, Marko Bertogna, and Gang Yao, « Limited preemptive schedul-
ing for real-time systems. a survey », in: IEEE Transactions on Industrial Informat-
ics 9.1 (2013), pp. 3–15 (cit. on p. 30).

[BC84] Gérard Berry and Laurent Cosserat, « The ESTEREL synchronous programming
language and its mathematical semantics », in: International Conference on Con-
currency, Springer, 1984, pp. 389–448 (cit. on p. 20).

[BCG+99] Sanjoy Baruah, Deji Chen, Sergey Gorinsky, and Aloysius Mok, « Generalized
multiframe tasks », in: Real-Time Systems 17.1 (1999), pp. 5–22 (cit. on p. 18).

[BCS+16] Antoine Blin, Cédric Courtaud, Julien Sopena, Julia Lawall, and Gilles Muller,
« Maximizing parallelism without exploding deadlines in a mixed criticality embed-
ded system », in: Real-Time Systems (ECRTS), 2016 28th Euromicro Conference
on, IEEE, 2016, pp. 109–119 (cit. on p. 66).

[BD07] Gerald G Brown and Robert F Dell, « Formulating integer linear programs: A
rogues’ gallery », in: INFORMS Transactions on Education 7.2 (2007), pp. 153–
159 (cit. on pp. 41, 56, 75).

[BDN+16] Matthias Becker, Dakshina Dasari, Borislav Nicolic, Benny Akesson, Vincent Nélis,
and Thomas Nolte, « Contention-free execution of automotive applications on a
clustered many-core platform », in: Real-Time Systems (ECRTS), 2016 28th Eu-
romicro Conference on, IEEE, 2016, pp. 14–24 (cit. on pp. 7, 11, 17, 23, 25, 30,
31, 35, 52, 64, 65, 66, 85).

[BDT13] Shuvra S Bhattacharyya, Ed F Deprettere, and Bart D Theelen, « Dynamic dataflow
graphs », in: Handbook of Signal Processing Systems, Springer, 2013, pp. 905–
944 (cit. on p. 20).

[BDW+12] Alan Burns, Robert I Davis, P Wang, and Fengxiang Zhang, « Partitioned EDF
scheduling for multiprocessors using a C = D task splitting scheme », in: Real-
Time Systems 48.1 (2012), pp. 3–33 (cit. on p. 32).

[BEL+96] Greet Bilsen, Marc Engels, Rudy Lauwereins, and Jean Peperstraete, « Cycle-
static dataflow », in: IEEE Transactions on signal processing 44.2 (1996), pp. 397–
408 (cit. on p. 20).

[Ber06] Christoph Berg, « PLRU cache domino effects », in: OASIcs-OpenAccess Series
in Informatics, vol. 4, Schloss Dagstuhl-Leibniz-Zentrum f"ur Informatik, 2006 (cit.
on p. 22).

[BMD+18] Matthias Becker, Saad Mubeen, Dakshina Dasari, Moris Behnam, and Thomas
Nolte, « Scheduling multi-rate real-time applications on clustered many-core ar-
chitectures with memory constraints », in: Proceedings of the 23rd Asia and South
Pacific Design Automation Conference, IEEE Press, 2018, pp. 560–567 (cit. on
pp. 69, 85, 88, 89).

96

BIBLIOGRAPHY

[BMV+15] Paolo Burgio, Andrea Marongiu, Paolo Valente, and Marko Bertogna, « A memory-
centric approach to enable timing-predictability within embedded many-core ac-
celerators », in: Real-Time and Embedded Systems and Technologies (RTEST),
2015 CSI Symposium on, IEEE, 2015, pp. 1–8 (cit. on p. 25).

[CBS14] Emanuele Cannella, Mohamed A Bamakhrama, and Todor Stefanov, « System-
level scheduling of real-time streaming applications using a semi-partitioned ap-
proach », in: Proceedings of the conference on Design, Automation & Test in Eu-
rope, European Design and Automation Association, 2014, p. 363 (cit. on p. 32).

[CC10] Weijia Che and Karam S Chatha, « Scheduling of synchronous data flow models
on scratchpad memory based embedded processors », in: Computer-Aided De-
sign (ICCAD), 2010 IEEE/ACM International Conference on, IEEE, 2010, pp. 205–
212 (cit. on p. 29).

[CC11] Weijia Che and Karam S Chatha, « Scheduling of stream programs onto SPM
enhanced processors with code overlay », in: Embedded Systems for Real-Time
Multimedia (ESTIMedia), 2011 9th IEEE Symposium on, IEEE, 2011, pp. 9–18
(cit. on pp. 29, 89).

[CCR+17] Sheng-Wei Cheng, Jian-Jia Chen, Jan Reineke, and Tei-Wei Kuo, « Memory Bank
Partitioning for Fixed-Priority Tasks in a Multi-core System », in: Real-Time Sys-
tems Symposium (RTSS), 2017 IEEE, IEEE, 2017, pp. 209–219 (cit. on pp. 35,
89).

[CEN+13] Daniel Cordes, Michael Engel, Olaf Neugebauer, and Peter Marwedel, « Auto-
matic extraction of pipeline parallelism for embedded heterogeneous multi-core
platforms », in: Compilers, Architecture and Synthesis for Embedded Systems
(CASES), 2013 International Conference on, IEEE, 2013, pp. 1–10 (cit. on p. 20).

[CFL+05] Jacques Combaz, Jean-Claude Fernandez, Thierry Lepley, and Joseph Sifakis,
« QoS control for optimality and safety », in: Proceedings of the 5th ACM interna-
tional conference on Embedded software, ACM, 2005, pp. 90–99 (cit. on p. 29).

[CFL+18] Gruia Calinescu, Chenchen Fu, Minming Li, Kai Wang, and Chun Jason Xue,
« Energy optimal task scheduling with normally-off local memory and sleep-aware
shared memory with access conflict », in: IEEE Transactions on Computers 1
(2018), pp. 1–1 (cit. on p. 30).

[CGJ96] Edward G Coffman Jr, Michael R Garey, and David S Johnson, « Approximation
algorithms for bin packing: a survey », in: Approximation algorithms for NP-hard
problems, PWS Publishing Co., 1996, pp. 46–93 (cit. on pp. 14, 29, 30, 36, 44,
47).

[CHO12] Franck Cassez, Ren’e Rydhof Hansen, and Mads Chr Olesen, « What is a Tim-
ing Anomaly? », in: OASIcs-OpenAccess Series in Informatics, vol. 23, Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2012 (cit. on p. 22).

[CLC+09] Yoonseo Choi, Yuan Lin, Nathan Chong, Scott Mahlke, and Trevor Mudge, « Stream
compilation for real-time embedded multicore systems », in: Code generation and
optimization, 2009. CGO 2009. International symposium on, IEEE, 2009, pp. 210–
220 (cit. on pp. 30, 70, 87, 89).

97

BIBLIOGRAPHY

[CM12] Daniel Cordes and Peter Marwedel, « Multi-objective aware extraction of task-
level parallelism using genetic algorithms », in: Design, Automation & Test in Eu-
rope Conference & Exhibition (DATE), 2012, IEEE, 2012, pp. 394–399 (cit. on
p. 20).

[COK+12] Junchul Choi, Hyunok Oh, Sungchan Kim, and Soonhoi Ha, « Executing syn-
chronous dataflow graphs on a SPM-based multicore architecture », in: Proceed-
ings of the 49th Annual Design Automation Conference, ACM, 2012, pp. 664–671
(cit. on p. 69).

[CSS98] Keith D Cooper, Philip J Schielke, and Devika Subramanian, « An experimental
evaluation of list scheduling », in: TR98 326 (1998) (cit. on p. 44).

[DB11] RI Davis and A Burns, « A survey of hard real-time scheduling algorithms for
multiprocessor systems », in: in ACM Computing Surveys (2011) (cit. on pp. 29,
35, 40).

[DFG+14] Guy Durrieu, Madeleine Faugere, Sylvain Girbal, Daniel Gracia Pérez, Claire
Pagetti, and Wolfgang Puffitsch, « Predictable flight management system imple-
mentation on a multicore processor », in: Embedded Real Time Software (ERTS’14),
2014 (cit. on pp. 25, 38, 85, 89).

[DHC+13] Boubacar Diouf, Can Hantacs, Albert Cohen, Özcan Özturk, and Jens Palsberg,
« A decoupled local memory allocator », in: ACM Transactions on Architecture
and Code Optimization (TACO) 9.4 (2013), p. 34 (cit. on p. 88).

[DHP+14] Philipp Degasperi, Stefan Hepp, Wolfgang Puffitsch, and Martin Schoeberl, « A
method cache for Patmos », in: Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC), 2014 IEEE 17th International Symposium on,
IEEE, 2014, pp. 100–108 (cit. on p. 22).

[DL78] Sudarshan K Dhall and Chung Laung Liu, « On a real-time scheduling problem »,
in: Operations research 26.1 (1978), pp. 127–140 (cit. on p. 31).

[DLM13] Huping Ding, Yun Liang, and Tulika Mitra, « Shared cache aware task mapping for
WCRT minimization », in: Design Automation Conference (ASP-DAC), 2013 18th
Asia and South Pacific, IEEE, 2013, pp. 735–740 (cit. on p. 33).

[DM89] Michael L. Dertouzos and Aloysius K. Mok, « Multiprocessor online scheduling
of hard-real-time tasks », in: IEEE Transactions on software engineering 15.12
(1989), pp. 1497–1506 (cit. on pp. 29, 30).

[DN12] Dakshina Dasari and Vincent Nelis, « An Analysis of the Impact of Bus Contention
on the WCET in Multicores », in: High Performance Computing and Communica-
tion & 2012 IEEE 9th International Conference on Embedded Software and Sys-
tems (HPCC-ICESS), 2012 IEEE 14th International Conference on, IEEE, 2012,
pp. 1450–1457 (cit. on p. 65).

[DNA16] Dakshina Dasari, Vincent Nelis, and Benny Akesson, « A framework for memory
contention analysis in multi-core platforms », in: Real-Time Systems 52.3 (2016),
pp. 272–322 (cit. on p. 65).

98

BIBLIOGRAPHY

[DP07] Jean-Francois Deverge and Isabelle Puaut, « WCET-directed dynamic scratch-
pad memory allocation of data », in: Real-Time Systems, 2007. ECRTS’07. 19th
Euromicro Conference on, IEEE, 2007, pp. 179–190 (cit. on pp. 69, 74, 88).

[DRW98] Robert P Dick, David L Rhodes, and Wayne Wolf, « TGFF: task graphs for free »,
in: Proceedings of the 6th international workshop on Hardware/software code-
sign, IEEE Computer Society, 1998, pp. 97–101 (cit. on pp. 46, 51, 62, 83).

[DVP+14] Benoît Dupont de Dinechin, Duco Van Amstel, Marc Poulhiès, and Guillaume
Lager, « Time-critical computing on a single-chip massively parallel processor »,
in: Design, Automation and Test in Europe Conference and Exhibition (DATE),
2014, IEEE, 2014, pp. 1–6 (cit. on pp. 9, 22, 23, 24, 35, 36, 50, 65, 70, 85, 86, 90,
92).

[Ens77] Philip Enslow Jr, « Multiprocessor organization—A survey », in: ACM Computing
Surveys (CSUR) 9.1 (1977), pp. 103–129 (cit. on pp. 26, 27, 36, 70).

[EY17] Pontus Ekberg and Wang Yi, « Fixed-priority schedulability of sporadic tasks on
uniprocessors is np-hard », in: Real-Time Systems Symposium (RTSS), 2017
IEEE, IEEE, 2017, pp. 139–146 (cit. on pp. 14, 29).

[FAQ+14] Gabriel Fernandez, Jaume Abella, Eduardo Quiñones, Christine Rochange, Tullio
Vardanega, and Francisco J Cazorla, « Contention in multicore hardware shared
resources: Understanding of the state of the art », in: OASIcs-OpenAccess Series
in Informatics, vol. 39, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014
(cit. on p. 32).

[FDC+13] Antoine Floc, Steven Derrien, Francois Charot, Christophe Wolinski, Olivier Sen-
tieys, Tomofumi Yuki, Ali El-Moussawi, Antoine Morvan, Kevin Martin, Maxime
Naullet, et al., « GeCoS: A framework for prototyping custom hardware design
flows », in: 2013 IEEE 13th International Working Conference on Source Code
Analysis and Manipulation (SCAM), IEEE, 2013, pp. 100–105 (cit. on p. 20).

[Gai02] Jiri Gaisler, « A portable and fault-tolerant microprocessor based on the SPARC
v8 architecture », in: Dependable Systems and Networks, 2002. DSN 2002. Pro-
ceedings. International Conference on, IEEE, 2002, pp. 409–415 (cit. on p. 12).

[GDL+03] Paolo Gai, Marco Di Natale, Giuseppe Lipari, Alberto Ferrari, Claudio Gabellini,
and Paolo Marceca, « A comparison of MPCP and MSRP when sharing resources
in the Janus multiple-processor on a chip platform », in: Real-Time and Embed-
ded Technology and Applications Symposium, 2003. Proceedings. The 9th IEEE,
IEEE, 2003, pp. 189–198 (cit. on p. 33).

[GGC16] Joël Goossens, Emmanuel Grolleau, and Liliana Cucu-Grosjean, « Periodicity of
real-time schedules for dependent periodic tasks on identical multiprocessor plat-
forms », in: Real-time systems 52.6 (2016), pp. 808–832 (cit. on p. 30).

[GHK+13] Robert de Groote, Philip KF Hölzenspies, Jan Kuper, and Hajo Broersma, « Back
to basics: Homogeneous representations of multi-rate synchronous dataflow graphs »,
in: Formal Methods and Models for Codesign (MEMOCODE), 2013 Eleventh
IEEE/ACM International Conference on, IEEE, 2013, pp. 35–46 (cit. on p. 19).

99

BIBLIOGRAPHY

[GKC+15] Raul Gorcitz, Emilien Kofman, Thomas Carle, Dumitru Potop-Butucaru, and Robert
De Simone, « On the Scalability of Constraint Solving for Static/Off-Line Real-
Time Scheduling », in: Formal Modeling and Analysis of Timed Systems, Springer,
2015, pp. 108–123 (cit. on p. 30).

[GLD01] Paolo Gai, Giuseppe Lipari, and Marco Di Natale, « Minimizing memory utilization
of real-time task sets in single and multi-processor systems-on-a-chip », in: Real-
Time Systems Symposium, 2001.(RTSS 2001). Proceedings. 22nd IEEE, IEEE,
2001, pp. 73–83 (cit. on p. 33).

[GNS09] Igor Griva, Stephen G Nash, and Ariela Sofer, Linear and nonlinear optimization,
vol. 108, Siam, 2009, ISBN: 0898716616 (cit. on pp. 41, 77).

[GP94] Milind Girkar and Constantine D Polychronopoulos, « The hierarchical task graph
as a universal intermediate representation », in: International Journal of Parallel
Programming 22.5 (1994), pp. 519–551 (cit. on p. 20).

[GPP09] Roberto Giorgi, Zdravko Popovic, and Nikola Puzovic, « Exploiting DMA to enable
non-blocking execution in Decoupled Threaded Architecture », in: Parallel & Dis-
tributed Processing, 2009. IPDPS 2009. IEEE International Symposium on, IEEE,
2009, pp. 1–8 (cit. on pp. 27, 88).

[Gra66] Ronald L Graham, « Bounds for certain multiprocessing anomalies », in: Bell Sys-
tem Technical Journal 45.9 (1966), pp. 1563–1581 (cit. on p. 44).

[GSH+16] Georgia Giannopoulou, Nikolay Stoimenov, Pengcheng Huang, Lothar Thiele,
and Benoît Dupont de Dinechin, « Mixed-criticality scheduling on cluster-based
manycores with shared communication and storage resources », in: Real-Time
Systems 52.4 (2016), pp. 399–449 (cit. on p. 66).

[GTA06] Michael I Gordon, William Thies, and Saman Amarasinghe, « Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs », in: ACM SIGOPS
Operating Systems Review, vol. 40, 5, ACM, 2006, pp. 151–162 (cit. on p. 24).

[GTK+02] Michael I Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S Meli, An-
drew A Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann, David Maze, et al.,
« A stream compiler for communication-exposed architectures », in: ACM SIG-
PLAN Notices, vol. 37, 10, ACM, 2002, pp. 291–303 (cit. on p. 89).

[HMC+16] Rihani Hamza, Moy Matthieu, Maiza Claire, Davis Robert I., and Altmeyer Se-
bastian, « Response Time Analysis of Synchronous Data Flow Programs on a
Many-core Processor », in: In proceedings of the 24th International Conference
on Real-Time Networks and Systems (RTNS 2016), ACM, 2016 (cit. on pp. 7, 23,
65).

[HPP09] Damien Hardy, Thomas Piquet, and Isabelle Puaut, « Using bypass to tighten
WCET estimates for multi-core processors with shared instruction caches », in:
Real-Time Systems Symposium, 2009, RTSS 2009. 30th IEEE, IEEE, 2009, pp. 68–
77 (cit. on pp. 32, 33).

100

BIBLIOGRAPHY

[HPS10] Benedikt Huber, Wolfgang Puffitsch, and Martin Schoeberl, « WCET driven de-
sign space exploration of an object cache », in: Proceedings of the 8th Interna-
tional Workshop on Java Technologies for Real-Time and Embedded Systems,
ACM, 2010, pp. 26–35 (cit. on p. 22).

[HRP17] Damien Hardy, Benjamin Rouxel, and Isabelle Puaut, « The Heptane Static Worst-
Case Execution Time Estimation Tool », in: 17th International Workshop on Worst-
Case Execution Time Analysis (WCET 2017), vol. 8, Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017, pp. 1–812 (cit. on p. 112).

[HRW15] Sebastian Hahn, Jan Reineke, and Reinhard Wilhelm, « Towards compositionality
in execution time analysis: definition and challenges », in: ACM SIGBED Review
12.1 (2015), pp. 28–36 (cit. on p. 22).

[JGL+17] Xu Jiang, Nan Guan, Xiang Long, and Wang Yi, « Semi-Federated Scheduling of
Parallel Real-Time Tasks on Multiprocessors », in: arXiv preprint arXiv:1705.03245
(2017) (cit. on p. 32).

[JP86] Mathai Joseph and Paritosh Pandya, « Finding response times in a real-time sys-
tem », in: The Computer Journal 29.5 (1986), pp. 390–395 (cit. on p. 32).

[JWA15] Catherine E Jarrett, Bryan C Ward, and James H Anderson, « A contention-
sensitive fine-grained locking protocol for multiprocessor real-time systems », in:
Proceedings of the 23rd International Conference on Real Time and Networks
Systems, ACM, 2015, pp. 3–12 (cit. on p. 33).

[KBC+14] Yooseong Kim, David Broman, Jian Cai, and Aviral Shrivastaval, « WCET-aware
dynamic code management on scratchpads for software-managed multicores »,
in: Real-Time and Embedded Technology and Applications Symposium (RTAS),
2014 IEEE 20th, IEEE, 2014, pp. 179–188 (cit. on pp. 37, 74, 77, 88).

[KDA+14] Hyoseung Kim, Dionisio De Niz, Björn Andersson, Mark Klein, Onur Mutlu, and
Ragunathan Rajkumar, « Bounding memory interference delay in COTS-based
multi-core systems », in: Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2014 IEEE 20th, IEEE, 2014, pp. 145–154 (cit. on p. 66).

[Kel15] Timon Kelter, « WCET analysis and optimization for multi-core real-time systems »,
PhD thesis, 2015 (cit. on p. 28).

[KHM+13] Timon Kelter, Tim Harde, Peter Marwedel, and Heiko Falk, « Evaluation of re-
source arbitration methods for multi-core real-time systems », in: OASIcs-OpenAccess
Series in Informatics, vol. 30, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2013 (cit. on pp. 38, 62, 83).

[KL91] Alexander C Klaiber and Henry M Levy, « An architecture for software-controlled
data prefetching », in: ACM SIGARCH Computer Architecture News, vol. 19, 3,
ACM, 1991, pp. 43–53 (cit. on p. 88).

[KM08] Manjunath Kudlur and Scott Mahlke, « Orchestrating the execution of stream pro-
grams on multicore platforms », in: ACM SIGPLAN Notices, vol. 43, 6, ACM, 2008,
pp. 114–124 (cit. on pp. 30, 69, 89).

101

BIBLIOGRAPHY

[KS14] Evangelia Kasapaki and Jens Sparsø, « Argo: A time-elastic time-division-multiplexed
NOC using asynchronous routers », in: Asynchronous Circuits and Systems (ASYNC),
2014 20th IEEE International Symposium on, IEEE, 2014, pp. 45–52 (cit. on
pp. 22, 23).

[KS15] Evangelia Kasapaki and Jens Sparso, « The Argo NOC: Combining TDM and
GALS », in: Circuit Theory and Design (ECCTD), 2015 European Conference on,
IEEE, 2015, pp. 1–4 (cit. on p. 22).

[KSS+16] Evangelia Kasapaki, Martin Schoeberl, Rasmus Bo Sørensen, Christoph Müller,
Kees Goossens, and Jens Sparsø, « Argo: A real-time network-on-chip architec-
ture with an efficient GALS implementation », in: IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 24.2 (2016), pp. 479–492 (cit. on p. 22).

[KST11] Md Kamruzzaman, Steven Swanson, and Dean M Tullsen, « Inter-core prefetch-
ing for multicore processors using migrating helper threads », in: ACM SIGPLAN
Notices 46.3 (2011), pp. 393–404 (cit. on p. 88).

[Kur01] Tadahiro Kuroda, « CMOS design challenges to power wall », in: Microprocesses
and Nanotechnology Conference, 2001 International, IEEE, 2001, pp. 6–7 (cit. on
pp. 7, 11).

[LCA+14] Jing Li, Jian Jia Chen, Kunal Agrawal, Chenyang Lu, Chris Gill, and Abusay-
eed Saifullah, « Analysis of federated and global scheduling for parallel real-time
tasks », in: Real-Time Systems (ECRTS), 2014 26th Euromicro Conference on,
IEEE, 2014, pp. 85–96 (cit. on p. 32).

[LL73] Chung Laung Liu and James W Layland, « Scheduling algorithms for multipro-
gramming in a hard-real-time environment », in: Journal of the ACM (JACM) 20.1
(1973), pp. 46–61 (cit. on pp. 18, 29, 30).

[LM87] Edward Ashford Lee and David G Messerschmitt, « Static scheduling of syn-
chronous data flow programs for digital signal processing », in: IEEE Transactions
on computers 100.1 (1987), pp. 24–35 (cit. on pp. 19, 24).

[LPR14] Hanbing Li, Isabelle Puaut, and Erven Rohou, « Traceability of flow information:
Reconciling compiler optimizations and WCET estimation », in: Proceedings of
the 22nd International Conference on Real-Time Networks and Systems, ACM,
2014, p. 97 (cit. on p. 14).

[LS99] Thomas Lundqvist and Per Stenstrom, « Timing anomalies in dynamically sched-
uled microprocessors », in: Real-time systems symposium, 1999. Proceedings.
The 20th IEEE, IEEE, 1999, pp. 12–21 (cit. on p. 22).

[LW82] Joseph Y-T Leung and Jennifer Whitehead, « On the complexity of fixed-priority
scheduling of periodic, real-time tasks », in: Performance evaluation 2.4 (1982),
pp. 237–250 (cit. on p. 29).

[LXK10] Lian Li, Jingling Xue, and Jens Knoop, « Scratchpad memory allocation for data
aggregates via interval coloring in superperfect graphs », in: ACM Transactions
on Embedded Computing Systems (TECS) 10.2 (2010), p. 28 (cit. on p. 88).

102

BIBLIOGRAPHY

[MB12] Andrea Marongiu and Luca Benini, « An OpenMP compiler for efficient use of
distributed scratchpad memory in MPSoCs », in: Computers, IEEE Transactions
on 61.2 (2012), pp. 222–236 (cit. on pp. 22, 24, 35).

[MBB+15] Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela,
and Giorgio Buttazzo, « Memory-processor co-scheduling in fixed priority sys-
tems », in: Proceedings of the 23rd International Conference on Real Time and
Networks Systems, ACM, 2015, pp. 87–96 (cit. on p. 25).

[MC96] Aloysius K Mok and Deji Chen, « A multiframe model for real-time tasks », in:
Real-Time Systems Symposium, 1996., 17th IEEE, IEEE, 1996, pp. 22–29 (cit.
on p. 18).

[MDC14] Renato Mancuso, Roman Dudko, and Marco Caccamo, « Light-PREM: Automated
software refactoring for predictable execution on COTS embedded systems », in:
Embedded and Real-Time Computing Systems and Applications (RTCSA), 2014
IEEE 20th International Conference on, IEEE, 2014, pp. 1–10 (cit. on p. 25).

[MHN+17] Theodoros Marinakis, Alexandros-Herodotos Haritatos, Konstantinos Nikas, Geor-
gios Goumas, and Iraklis Anagnostopoulos, « An efficient and fair scheduling pol-
icy for multiprocessor platforms », in: Circuits and Systems (ISCAS), 2017 IEEE
International Symposium on, IEEE, 2017, pp. 1–4 (cit. on p. 31).

[MHP17] Sébastien Martinez, Damien Hardy, and Isabelle Puaut, « Quantifying WCET re-
duction of parallel applications by introducing slack time to limit resource con-
tention », in: Proceedings of the 25th International Conference on Real-Time Net-
works and Systems, ACM, 2017, pp. 188–197 (cit. on p. 66).

[Mic16] Pierre Michaud, « Best-offset hardware prefetching », in: 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA), IEEE, 2016,
pp. 469–480 (cit. on p. 88).

[MNP+16] Cláudio Maia, Luis Nogueira, Luis Miguel Pinho, and Daniel Gracia Pérez, « A
closer look into the aer model », in: Emerging Technologies and Factory Automa-
tion (ETFA), 2016 IEEE 21st International Conference on, IEEE, 2016, pp. 1–8
(cit. on pp. 8, 26, 69, 91).

[Mok83] Aloysius K Mok, « Fundamental design problems of distributed systems for the
hard-real-time environment », in: (1983) (cit. on p. 18).

[ND10] John Nickolls and William J Dally, « The GPU computing era », in: IEEE micro
30.2 (2010) (cit. on p. 24).

[Neu82] John von Neumann, « First draft of a report on the EDVAC », in: The Origins of
Digital Computers, Springer, 1982, pp. 383–392 (cit. on p. 24).

[NHP17] Viet Anh Nguyen, Damien Hardy, and Isabelle Puaut, « Cache-conscious offline
real-time task scheduling for multi-core processors », in: 29th Euromicro Confer-
ence on Real-Time Systems (ECRTS17), 2017 (cit. on pp. 31, 33).

[NSE09] Mircea Negrean, Simon Schliecker, and Rolf Ernst, « Response-time analysis of
arbitrarily activated tasks in multiprocessor systems with shared resources », in:
Proceedings of the Conference on Design, Automation and Test in Europe, Euro-
pean Design and Automation Association, 2009, pp. 524–529 (cit. on p. 32).

103

BIBLIOGRAPHY

[ORS13] Haluk Ozaktas, Christine Rochange, and Pascal Sainrat, « Automatic WCET Anal-
ysis of Real-Time Parallel Applications. », in: WCET, 2013, pp. 11–20 (cit. on
p. 29).

[PBB+11] Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco
Caccamo, and Russell Kegley, « A predictable execution model for COTS-based
embedded systems », in: 2011 17th IEEE Real-Time and Embedded Technology
and Applications Symposium, IEEE, 2011, pp. 269–279 (cit. on pp. 17, 25, 64).

[PDC+18] Isabelle Puaut, Mickael Dardaillon, Christoph Cullmann, Gernot Gebhard, and
Steven Derrien, « Fine-Grain Iterative Compilation for WCET Estimation », in: 18th
International Workshop on Worst-Case Execution Time Analysis (WCET 2018),
vol. 58, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018 (cit. on p. 13).

[Per17] Quentin Perret, « Predictable execution on many-core processors », PhD thesis,
University of Toulouse, 2017 (cit. on pp. 11, 19, 23, 30).

[PFB+11] Claire Pagetti, Julien Forget, Frédéric Boniol, Mikel Cordovilla, and David Lesens,
« Multi-task implementation of multi-periodic synchronous programs », in: Dis-
crete event dynamic systems 21.3 (2011), pp. 307–338 (cit. on p. 20).

[PK06] Ruxandra Pop and Shashi Kumar, « On Performance Improvement of Concurrent
Applications Using Simultaneous Multithreaded Processors as NoC Resources »,
in: Norchip Conference, 2006. 24th, IEEE, 2006, pp. 191–196 (cit. on p. 30).

[PNP15] Wolfgang Puffitsch, Eric Noulard, and Claire Pagetti, « Off-line mapping of multi-
rate dependent task sets to many-core platforms », in: Real-Time Systems 51.5
(2015), pp. 526–565 (cit. on pp. 27, 28, 30, 31).

[PP07] Isabelle Puaut and Christophe Pais, « Scratchpad memories vs locked caches
in hard real-time systems: a quantitative comparison », in: Design, Automation &
Test in Europe Conference & Exhibition, 2007. DATE’07, IEEE, 2007, pp. 1–6 (cit.
on pp. 17, 22, 35).

[PP13] Dumitru Potop-Butucaru and Isabelle Puaut, « Integrated Worst-Case Execution
Time Estimation of Multicore Applications. », in: WCET, 2013, pp. 21–31 (cit. on
p. 28).

[Pus03] Peter Puschner, « The single-path approach towards WCET-analysable software »,
in: Industrial Technology, 2003 IEEE International Conference on, vol. 2, IEEE,
2003, pp. 699–704 (cit. on p. 24).

[Raj12] Ragunathan Rajkumar, Synchronization in real-time systems: a priority inheri-
tance approach, vol. 151, Springer Science & Business Media, 2012 (cit. on
p. 33).

[RDP16] Benjamin Rouxel, Steven Derrien, and Isabelle Puaut, « Resource-aware task
graph scheduling using ILP on multi-core », in: Advanced Computer Architecture
and Compilation for High-Performance and Embedded Systems (ACACES), 2016
(cit. on p. 112).

104

BIBLIOGRAPHY

[RDP17] Benjamin Rouxel, Steven Derrien, and Isabelle Puaut, « Tightening contention
delays while scheduling parallel applications on multi-core architecture », in: Em-
bedded Software (EMSOFT), 2017 International Conference on, ACM, 2017 (cit.
on pp. 28, 52, 85, 112).

[RGB+07] Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm, « Timing pre-
dictability of cache replacement policies », in: Real-Time Systems 37.2 (2007),
pp. 99–122 (cit. on pp. 12, 22).

[Rit93] Dennis M Ritchie, « The development of the C language », in: ACM Sigplan No-
tices 28.3 (1993), pp. 201–208 (cit. on p. 24).

[RP17] Benjamin Rouxel and Isabelle Puaut, « STR2RTS: Refactored StreamIT bench-
marks into statically analyzable parallel benchmarks for WCET estimation & real-
time scheduling », in: 17th International Workshop on Worst-Case Execution Time
Analysis (WCET 2017), vol. 57, Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2017 (cit. on pp. 46, 51, 62, 83, 87, 112).

[RSD+19] Benjamin Rouxel, Stefanos Skalistis, Steven Derrien, and Isabelle Puaut, « Hid-
ing communication delays in contention-free execution for SPM-based multi-core
architectures », in: submitted to RTAS, 2019 (cit. on pp. 70, 90, 112).

[SBH+15] Martin Schoeberl, Florian Brandner, Stefan Hepp, Wolfgang Puffitsch, and Daniel
Prokesch, « Patmos reference handbook », in: Technical University of Denmark,
Tech. Rep (2015) (cit. on pp. 22, 36, 70, 94).

[SBS+12] Martin Schoeberl, Florian Brandner, Jens Sparsø, and Evangelia Kasapaki, « A
statically scheduled time-division-multiplexed network-on-chip for real-time sys-
tems », in: Networks on Chip (NoCS), 2012 Sixth IEEE/ACM International Sym-
posium on, IEEE, 2012, pp. 152–160 (cit. on p. 22).

[Sch97] Robert R Schaller, « Moore’s law: past, present and future », in: IEEE spectrum
34.6 (1997), pp. 52–59 (cit. on pp. 7, 11).

[SCP+14] Martin Schoeberl, David Vh Chong, Wolfgang Puffitsch, and Jens Sparso, « A
time-predictable memory network-on-chip », in: 14th International Workshop on
Worst-Case Execution Time Analysis, 2014, p. 53 (cit. on p. 22).

[SCT10] Andreas Schranzhofer, Jian-Jia Chen, and Lothar Thiele, « Timing analysis for
TDMA arbitration in resource sharing systems », in: Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2010 16th IEEE, IEEE, 2010,
pp. 215–224 (cit. on p. 27).

[SEL08] Insik Shin, Arvind Easwaran, and Insup Lee, « Hierarchical scheduling frame-
work for virtual clustering of multiprocessors », in: Real-Time Systems, 2008.
ECRTS’08. Euromicro Conference on, IEEE, 2008, pp. 181–190 (cit. on p. 32).

[SHP13] Martin Schoeberl, Benedikt Huber, and Wolfgang Puffitsch, « Data cache organi-
zation for accurate timing analysis », in: Real-Time Systems 49.1 (2013), pp. 1–
28 (cit. on p. 22).

[SM08] Vivy Suhendra and Tulika Mitra, « Exploring locking & partitioning for predictable
shared caches on multi-cores », in: Design Automation Conference, 2008. DAC
2008. 45th ACM/IEEE, IEEE, 2008, pp. 300–303 (cit. on pp. 32, 33).

105

BIBLIOGRAPHY

[SNE10] Simon Schliecker, Mircea Negrean, and Rolf Ernst, « Bounding the shared re-
source load for the performance analysis of multiprocessor systems », in: Pro-
ceedings of the conference on design, automation and test in Europe, European
Design and Automation Association, 2010, pp. 759–764 (cit. on p. 65).

[SP17] Muhammad Refaat Soliman and Rodolfo Pellizzoni, « WCET-Driven dynamic data
scratchpad management with compiler-directed prefetching », in: LIPIcs-Leibniz
International Proceedings in Informatics, vol. 76, Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2017 (cit. on p. 89).

[SPS+15] Rasmus Bo Sorensen, Wolfgang Puffitsch, Martin Schoeberl, and Jens Sparso,
« Message Passing on a Time-predictable Multicore Processor », in: (2015) (cit.
on p. 28).

[SR94] Kang G Shin and Parameswaran Ramanathan, « Real-time computing: A new
discipline of computer science and engineering », in: Proceedings of the IEEE
82.1 (1994), pp. 6–24 (cit. on p. 11).

[SRL90] Lui Sha, Ragunathan Rajkumar, and John P Lehoczky, « Priority inheritance pro-
tocols: An approach to real-time synchronization », in: IEEE Transactions on com-
puters 39.9 (1990), pp. 1175–1185 (cit. on p. 33).

[SRP19] Martin Schoeberl, Benjamin Rouxel, and Isabelle Puaut, « A Time-predictable
Branch Predictor », in: Proceedings of the 34rd Annual ACM Symposium on Ap-
plied Computing, ACM, 2019 (cit. on p. 112).

[SS16] Stefanos Skalistis and Alena Simalatsar, « Worst-case execution time analysis
for many-core architectures with NoC », in: International Conference on Formal
Modeling and Analysis of Timed Systems, Springer, 2016, pp. 211–227 (cit. on
p. 23).

[SS17] Stefanos Skalistis and Alena Simalatsar, « Near-optimal deployment of dataflow
applications on many-core platforms with real-time guarantees », in: 2017 De-
sign, Automation & Test in Europe Conference & Exhibition (DATE), IEEE, 2017,
pp. 752–757 (cit. on pp. 31, 89).

[SSP+11] Martin Schoeberl, Pascal Schleuniger, Wolfgang Puffitsch, Florian Brandner, Chris-
tian W Probst, Sven Karlsson, and Tommy Thorn, « Towards a time-predictable
dual-issue microprocessor: The Patmos approach », in: Bringing Theory to Prac-
tice: Predictability and Performance in Embedded Systems, vol. 18, 2011, pp. 11–
21 (cit. on pp. 22, 50).

[SSP+14] Rasmus Bo Sorensen, Jens Sparso, Mikkel Rath Pedersen, and Jaspur Hojgaard,
« A metaheuristic scheduler for time division multiplexed networks-on-chip », in:
Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC),
2014 IEEE 17th International Symposium on, IEEE, 2014, pp. 309–316 (cit. on
p. 27).

[SY15] Martin Stigge and Wang Yi, « Graph-based models for real-time workload: a sur-
vey », in: Real-Time Systems 51.5 (2015), pp. 602–636 (cit. on p. 18).

[Tay83] Richard N Taylor, « Complexity of analyzing the synchronization structure of con-
current programs », in: Acta Informatica 19.1 (1983), pp. 57–84 (cit. on p. 54).

106

BIBLIOGRAPHY

[TKA02] William Thies, Michal Karczmarek, and Saman Amarasinghe, « StreamIt: A lan-
guage for streaming applications », in: Compiler Construction, Springer, 2002,
pp. 179–196 (cit. on pp. 20, 62, 83).

[TMW+16] Rohan Tabish, Renato Mancuso, Saud Wasly, Ahmed Alhammad, Sujit S Phatak,
Rodolfo Pellizzoni, and Marco Caccamo, « A real-time scratchpad-centric os for
multi-core embedded systems », in: Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2016 IEEE, IEEE, 2016, pp. 1–11 (cit. on pp. 85,
89).

[TPG+14] Pranav Tendulkar, Peter Poplavko, Ioannis Galanommatis, and Oded Maler, « Many-
core scheduling of data parallel applications using SMT solvers », in: Digital Sys-
tem Design (DSD), 2014 17th Euromicro Conference on, IEEE, 2014, pp. 615–
622 (cit. on pp. 19, 30, 39, 69, 89).

[TPM14] Pranav Tendulkar, Peter Poplavko, and Oded Maler, « Strictly periodic scheduling
of acyclic synchronous dataflow graphs using SMT solvers », in: Verimag Re-
search Report TR-2014 (2014), p. 501 (cit. on p. 30).

[TTT10] Hideki Takase, Hiroyuki Tomiyama, and Hiroaki Takada, « Partitioning and allo-
cation of scratch-pad memory for priority-based preemptive multi-task systems »,
in: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2010,
IEEE, 2010, pp. 1124–1129 (cit. on p. 88).

[Tur37] Alan M Turing, « On computable numbers, with an application to the Entschei-
dungsproblem », in: Proceedings of the London mathematical society 2.1 (1937),
pp. 230–265 (cit. on p. 24).

[War62] Stephen Warshall, « A theorem on boolean matrices », in: Journal of the ACM
(JACM) 9.1 (1962), pp. 11–12 (cit. on p. 54).

[WCM16] Wenhao Wang, Fabrice Camut, and Benoit Miramond, « Generation of schedule
tables on multi-core systems for AUTOSAR applications », in: Design and Archi-
tectures for Signal and Image Processing (DASIP), 2016 Conference on, IEEE,
2016, pp. 191–198 (cit. on pp. 22, 23).

[WDA+12] Jack Whitham, Robert I Davis, Neil C Audsley, Sebastian Altmeyer, and Claire
Maiza, « Investigation of scratchpad memory for preemptive multitasking », in:
Real-Time Systems Symposium (RTSS), 2012 IEEE 33rd, Ieee, 2012, pp. 3–13
(cit. on p. 33).

[WEE+08] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-
mann, Tulika Mitra, et al., « The worst-case execution-time problem—overview
of methods and survey of tools », in: ACM Transactions on Embedded Computing
Systems (TECS) 7.3 (2008), p. 36 (cit. on pp. 14, 28).

[WGR+09] Reinhard Wilhelm, Daniel Grund, Jan Reineke, Marc Schlickling, Markus Pis-
ter, and Christian Ferdinand, « Memory hierarchies, pipelines, and buses for fu-
ture architectures in time-critical embedded systems », in: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 28.7 (2009), p. 966
(cit. on p. 22).

107

BIBLIOGRAPHY

[WGW+14] Andreas Weichslgartner, Deepak Gangadharan, Stefan Wildermann, Michael Glaß,
and Jurgen Teich, « DAARM: design-time application analysis and run-time map-
ping for predictable execution in many-core systems », in: Hardware/Software
Codesign and System Synthesis (CODES+ ISSS), 2014 International Conference
on, IEEE, 2014, pp. 1–10 (cit. on p. 30).

[WP13] Saud Wasly and Rodolfo Pellizzoni, « A dynamic scratchpad memory unit for pre-
dictable real-time embedded systems », in: Real-Time Systems (ECRTS), 2013
25th Euromicro Conference on, IEEE, 2013, pp. 183–192 (cit. on p. 88).

[WP14] Saud Wasly and Rodolfo Pellizzoni, « Hiding memory latency using fixed priority
scheduling », in: Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), 2014 IEEE 20th, IEEE, 2014, pp. 75–86 (cit. on p. 89).

[WS11] Jack Whitham and Martin Schoeberl, The limits of TDMA based memory access
scheduling, tech. rep., Technical Report YCS-2011-470, University of York, 2011
(cit. on p. 27).

[YHZ+09] Ying Yi, Wei Han, Xin Zhao, Ahmet T Erdogan, and Tughrul Arslan, « An ilp for-
mulation for task mapping and scheduling on multi-core architectures », in: De-
sign, Automation & Test in Europe Conference & Exhibition, 2009. DATE’09. IEEE,
2009, pp. 33–38 (cit. on p. 30).

[YPV15] Heechul Yun, Rodolfo Pellizzon, and Prathap Kumar Valsan, « Parallelism-aware
memory interference delay analysis for cots multicore systems », in: Real-Time
Systems (ECRTS), 2015 27th Euromicro Conference on, IEEE, 2015, pp. 184–
195 (cit. on p. 66).

[Zak13] George F Zaki, « Scalable techniques for scheduling and mapping DSP applica-
tions onto embedded multicore platforms », PhD thesis, University of Maryland,
College Park, 2013 (cit. on pp. 19, 30).

[ZLL+18] Quan Zhou, Guohui Li, Jianjun Li, and Chenggang Deng, « Execution-Efficient
Response Time Analysis on Global Multiprocessor Platforms », in: IEEE Transac-
tions on Parallel and Distributed Systems (2018) (cit. on p. 31).

108

LIST OF FIGURES

1 Real-time is not real-fast . 12
2 Illustrating example showing the importance of the execution order 13
3 Worst-Case Execution Times (WCET) . 14

1.1 Example of an application represented by a DAG 19
1.2 An SDF example and its transformation to HSDF and one possible PEG 20
1.3 Expanded example of a fork-Join graph . 21
1.4 Example of a CSDF . 21
1.5 Patmos core (left side) and its Argo NoC (right side), from [KS14] 23
1.6 Kalray core (left side) and its NoC (right side), from [DVP+14] 24
1.7 Task representation with different execution model 25
1.8 Representation of the Round-Robin policy principle. Access order is R.1, R.2, R.3 26
1.9 Example of a TDMA arbitration scheme. Blue filled boxes are TDM slots, granting

time for the corresponding core where horizontal-lined boxes represent memory
accesses as in PREM in Figure 1.7b . 27

2.1 A multi-core architecture abstraction . 36
2.2 Delay representation. Configuration: Tslot = 2 time units, Dslot = 1 data-word,

3 cores Request: 5 data words gives 3 chunks. Each chunk is delayed by 2
interferences × Tslot . 37

2.3 Task graph example . 38
2.4 Resulting schedule for task-graph from Figure 2.3 with a worst-case contention

policy targeting a tri-core architecture equivalent to Figure 2.1. Overall makespan
is 122 time units. 40

2.5 Scalability of ILP formulation (synthetic task graphs / STG) 47
2.6 Distribution of the degradation of the heuristic against the ILP formulation using

STG task set. (logarithmic scale) . 48
2.7 Average makespan when varying Tslot (synthetic task graphs / BTG) 49

3.1 Running task graph example, identical to Figure 2.3 52
3.2 Motivation example . 53
3.3 Example of adjustments that occur while scheduling. (3.3a) initial schedule of 2

tasks. (3.3b) adjusted communication delays after the addition of task G 61
3.4 Distribution of the degradation of the heuristic against the ILP formulation using

STG task set. 63
3.5 Gain in % obtained with contention-aware scenario (heuristic, STR2RTS bench-

marks) . 64

4.1 Hardware abstraction . 71
4.2 Running task graph example, identical to Figure 2.3 72
4.3 Motivating example . 73

109

LIST OF FIGURES

4.4 Partial schedule of the task graph from Figure 4.2 with a DFS sorting strategy in
the heuristic algorithm. 80

4.5 Distribution degradation heuristic vs ILP (232 test-cases) 84
4.6 Gain of non-blocking communications over blocking on STR2RTS benchmarks

per cores/SPM configuration – avg: 4% . 85
4.7 Gain of non-blocking communications over blocking on TGFF benchmarks – av-

erage: 8% . 86
4.8 Average gain of non-blocking schedule length over blocking one depending on

fragmentation strategy . 87

110

LIST OF ALGORITHMS

2.3.1Forward list scheduling . 45
2.3.2Build list scheduled element . 45
2.3.3Schedule an element . 46

3.3.1Forward list scheduling . 59
3.3.2Adjust schedule in contention-free mode : Updating the schedule to avoid contention 60
3.3.3Adjust schedule in contention-aware mode : Updating the schedule to cope with

interference . 61

4.5.1Forward list scheduling . 81
4.5.2Build list scheduled element . 81
4.5.3Schedule an element . 82
4.5.4Allocate a SPM region to a phase . 82

111

LIST OF PUBLICATIONS

— Benjamin Rouxel et al., « Hiding communication delays in contention-free execution for
SPM-based multi-core architectures », in: submitted to RTAS, 2019

— Martin Schoeberl, Benjamin Rouxel, and Isabelle Puaut, « A Time-predictable Branch
Predictor », in: Proceedings of the 34rd Annual ACM Symposium on Applied Computing,
ACM, 2019

— Benjamin Rouxel, Steven Derrien, and Isabelle Puaut, « Tightening contention delays
while scheduling parallel applications on multi-core architecture », in: Embedded Soft-
ware (EMSOFT), 2017 International Conference on, ACM, 2017

— Benjamin Rouxel and Isabelle Puaut, « STR2RTS: Refactored StreamIT benchmarks into
statically analyzable parallel benchmarks for WCET estimation & real-time scheduling »,
in: 17th International Workshop on Worst-Case Execution Time Analysis (WCET 2017),
vol. 57, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017

— Damien Hardy, Benjamin Rouxel, and Isabelle Puaut, « The Heptane Static Worst-Case
Execution Time Estimation Tool », in: 17th International Workshop on Worst-Case Exe-
cution Time Analysis (WCET 2017), vol. 8, Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2017, pp. 1–812

— Benjamin Rouxel, Steven Derrien, and Isabelle Puaut, « Resource-aware task graph
scheduling using ILP on multi-core », in: Advanced Computer Architecture and Com-
pilation for High-Performance and Embedded Systems (ACACES), 2016

112

Titre: Minimiser l’impact des communications lors de
l’ordonnancement d’application temps-réels sur des architectures
multi-cœurs

Mot clés : systèmes temps-réel, multi-cœurs, ordonnancement, contention

Les architectures multi-coeurs utilisant des
mémoire bloc-notes sont des architectures
attrayantes pour l’exécution des applications
embarquées temps-réel, car elles offrent une
grande capacité de calcul. Cependant, les
systèmes temps-réel nécessitent de satis-
faire des contraintes temporelles, ce qui peut
être compliqué sur ce type d’architectures à
cause notamment des ressources matérielles
physiquement partagées entre les coeurs.
Plus précisément, les scénarios de pire cas
de partage du bus de communication entre les
coeurs et la mémoire externe sont trop pes-
simistes.

Cette thèse propose des stratégies
pour réduire ce pessimisme lors de
l’ordonnancement d’applications sur des ar-
chitectures multi-coeurs. Tout d’abord, la pré-
cision du pire cas des coûts de communication
est accrue grâce aux informations disponibles
sur l’application et l’état de l’ordonnancement
en cours. Ensuite, les capacités de paral-
lélisation du matériel sont exploitées afin de
superposer les calculs et les communications.
De plus, les possibilités de superposition sont
accrues par le morcellement de ces communi-
cations.

Title: Minimising shared resource contention when scheduling
real-time applications on multi-core architectures

Keywords : real-time system, multi-cores, scheduling, contention

Abstract : Multi-core architectures using
scratch pad memories are very attractive to ex-
ecute embedded time-critical applications, be-
cause they offer a large computational power.
However, ensuring that timing constraints are
met on such platforms is challenging, because
some hardware resources are shared between
cores. When targeting the bus connecting
cores and external memory, worst-case shar-

ing scenarios are too pessimistic.
This thesis propose strategies to reduce

this pessimism. These strategies offer to both
improve the accuracy of worst-case commu-
nication costs, and to exploit hardware paral-
lel capacities by overlapping computations and
communications. Moreover, fragmenting the
latter allow to increase overlapping possibili-
ties.

	Résumé de thèse
	Introduction
	Hard real-time systems and multi-core platforms
	Task models and their expressiveness
	Predictable multi-core architectures
	Towards parallel and predictable execution models
	Task and Inter-core communication
	Worst-case execution time estimation
	Real-time scheduling: a state of the art
	Classification of single-core schedulers
	Multi-core partitioned scheduling
	Multi-core global scheduling
	Multi-core hybrid scheduling
	Shared resource management on single-core and multi-core architectures

	Conclusion

	Generic static scheduling frameworks with worst-case contention
	Basic predictable multi-core architectures
	Software Model
	Inter-core communication

	Scheduling framework
	Example
	Integer Linear Programming (ILP) formulation
	Forward List Scheduling algorithm

	Experiments
	Scalability of the ILP formulation
	Quality of the heuristic compared to the ILP
	Impact of Tslot on the schedule

	Conclusion

	Computing the precise contention to build contention-aware schedules
	Motivating example
	Improving worst-case communication cost
	Resource-aware scheduling techniques
	Integer Linear Programming (ILP) formulation
	Forward List Scheduling algorithm

	Experiments
	Quality of the heuristic compared to ILP
	Quality of the heuristic compared to worst-contention communications
	Quality of the heuristic compared to contention-free communications

	Related work
	Conclusion

	Hiding communication latencies in contention-free schedules
	Hardware support
	Software & execution model support
	Motivating example
	SPM allocation scheme
	Non-blocking contention-free scheduling techniques
	Integer Linear Programming (ILP) formulation
	Forward List Scheduling algorithm

	Experiments
	Quality of the heuristic compared to the ILP
	Blocking vs non-blocking communications
	Impact of fragmentation strategy
	Impact of topological sorting algorithm

	Related Work
	Conclusion

	Conclusion
	Appendices
	STR2RTS benchmark suite

	Bibliography
	List of Figures
	List of Algorithms
	List of Publications

