
Master research Internship

Master Thesis

Symbolic Evaluation and Disassembling x86 Low-Level Code

Domain : Binary Analysis - Symbolic Computation - Information Retrieval

Author:

Benjamin Rouxel

Supervisor:

Jean-Yves Supervisor

CARTE � LORIA

Abstract

Malwares have been existing from the beginning of computer science. Nowadays malwares authors
use more and more sophisticated obfuscations to hide their code. Analyzing malwares is not an easy
task as their authors use of imagination to �nd obfuscations that defeat standard disassemblers.
The major tool they use is a packer which warps the malicious code by series of self-modifying steps.

The key tools to study or detect malwares, are unpackers and disassemblers. Most of the time,
those tools are studied independently and thus not compatible between each other. In addition,
nowadays we have to process a huge amount of suspicious softwares, in this context existing solutions
are not e�cient.

This document focuses on x86 malwares and how to build a disassembler in conjunction of an
unpacker which can handle self-modifying code and other obfuscation techniques. It uses dynamic
introspection and static analysis to reconstruct the program in a high level of abstraction. The
proposed solution implements the work of [1, 2, 3]. The method is evaluated as sound and e�cient.
Results are encouraging but further work will show if the accuracy of the disassembler is improvable.

Contents

1 Introduction 1

2 Introduction to software and hardware architecture 3

3 Reverse-engineering an executable binary �le 5
3.1 Linear sweep disassembler . 6
3.2 Recursive traversal . 7
3.3 Dynamic reconstruction . 8

4 Pitfalls in disassembling 9
4.1 Common disassembling issues . 9
4.2 Obfuscations . 10
4.3 Self-modifying code . 14

5 CoDisAsm: a concatic disassembler 17
5.1 TraceSurfer . 18
5.2 The disassembler . 20
5.3 Extensions of CoDisAsm . 22

5.3.1 Interaction with BINSEC Platform . 22
5.3.2 Overlapping instructions and layers . 25

6 Evaluation 26
6.1 Evaluation of the tracer . 27
6.2 Evaluation of the disassembler . 29
6.3 Evaluation the whole method . 31

7 Related work 33

8 Conclusion 34

1

1 Introduction

Context Malwares have been spread from the early 80's. They were �rst propagated through
�oppy disk then through the network attached to �les like Microsoft O�ce Document (MyDoom1 -
2004), then attached to emails (ILoveYou2 - 2000) or propagated by infected USB drives (Stuxnet[4]
- 2010). Recent attacks we heard about combine di�erent techniques such as phishing which consists
in making a fake website or email with colors of a bank or a legitimate organizations. Malwares are
then installed on behalf of the victim while navigating on the fake website. The method used to
spread malwares evolved with time, and the goal of their authors also changed.

At the beginning malwares authors were more interesting about �attering their egos. As it was
a challenging game, they were pride to explode the counter of infected machines. Then criminal
organizations saw the possibility to make pro�t and some malwares appeared like CryptoLocker3

(2013), which encrypts the victim hard drive who then must pay to get the decryption key. Then,
the fashion of Distributed Denial Of Service (DDOS) emerged ; this is an attack against a service
or a server to make it unavailable by sending a lot of requests in a short period of time. Hackers
developed malwares to create botnets which are a network of infected machine called zombies and
answering to a command-and-control server (Waledac4 - 2010). The botnet is then a huge strike force
to perform DDOS. In the recent news, Julian Assange and Edward Snowden revealed several secrets
from NSA5. We now know that such kind of agency builds malwares to infect other governments or
to watch people ensuring they are not terrorists.

Moreover, following statistics given during Shonan meeting on low-level code analysis (March
2015), Google receives more that 300 000 �les per day and has a collection of 400 millions of malware.
All these �les should be analyzed and classi�ed in order to build defenses against malware threats.
Thus performance become a major concern when dealing with a huge amount of softwares: big
code analysis. But performance comes with a cost of precision, hence I will have to �nd the good
threshold between performance and precision.

Problematics To prevent the threats coming from malwares, security analysts need tools to
analyze a posteriori the new discovered malwares, and a priori to prevent our devices from installing
malicious softwares and so to protect our lives. The former requires a sound disassembler/decompiler
to allow a human analyst to study the behavior of the malware ; obviously malwares are distributed
in a compiled form. Analyzing compiled code is called reverse-engineering as it is the reverse process
of the software engineering. Also to protect our devices we need robust and e�cient anti-viruses
able to match every known malwares even when they are hidden with new techniques.

Current anti-viruses detection technique are based on software signatures or behavior analysis
[5]. However for mutating viruses, the signature will change at each mutation bringing the need
to update the database signature. Also, malwares are mostly hidden behind obfuscations and self-
modifying phases, and software signature based detection technique only match the code of the �rst
phase which is not really the malware. Thus changing tool (called a packer) used to hide a malware
also changes its signature.

1http://edition.cnn.com/2004/TECH/internet/01/28/mydoom.spreadwed/
2https://en.wikipedia.org/wiki/ILOVEYOU
3https://en.wikipedia.org/wiki/CryptoLocker
4https://en.wikipedia.org/wiki/Waledac_botnet
5National Security Agency � Intelligence Service from the United States of America

1

http://edition.cnn.com/2004/TECH/internet/01/28/mydoom.spreadwed/
https://en.wikipedia.org/wiki/ILOVEYOU
https://en.wikipedia.org/wiki/CryptoLocker
https://en.wikipedia.org/wiki/Waledac_botnet

When analyzing malwares there is di�erent steps. First is to unpack the self-modifying code,
then disassembling each phases followed by the reconstruction of a representation in a high level of
abstraction on which it is possible to perform some complex static analyses or transform it in an
other intermediate language prior to those kind of analyses. Each step is dependent of the previous
one. The success of a step has an impact on the next one ; i.e.: if the disassembling is wrong then
the more complex analysis will also be wrong. It is crucial that the unpacker and the disassembler
are robust and sound as they are the two �rst steps.

Current anti-viruses implement basic unpacking features [6] but they fall into the trap when
malwares authors use complex packers.

Commercial and research-oriented tools are designed for reverse-engineering purposes and use
complex computation and/or heuristics to resolve common problem. This result in a large run-time
overhead, making them unable to handle huge amount of code. In addition, some of them are able
to deobfuscate some common obfuscations or packers, but do not resolve this problem in a general
way. Also most of the known disassembler can not deal with self-modifying code, and unpacker are
not build to be used with those disassemblers.

Objectives My objectives are then in two parts, analyzing and detecting malwares with a concern
of performance for the detection part. The team CARTE from LORIA1/INRIA2 aims to build a
sound and e�cient malwares detector (an anti-virus). The decision procedure of the detector (the
procedure that decides if a software is malicious or not) is based on the morphology of the virus
introduced by Kaczmarek [7]. The morphology is the Control Flow Graph (CFG) extracted from
the input program. Thus the decision procedure needs the CFG extracted from the malware [8].
The morphological analysis needed for the decision is out of the scope of this master thesis and is
detailed by Thierry[3].

The purpose of this master thesis is then to create a sound and e�cient disassembler and CFG
extractor of obfuscated and self-modifying malwares which can be used either by an analyst either
by an automatic process on huge amount of code. The unpacker part is provided by CARTE, and
must be linked to this disassembler under the project name CoDisAsm.

The second objective of this master thesis is carried by the ANR3 project BINSEC 4 which aims
to build a powerful binary analysis platform. Thus the created disassembler must be �exible enough
to easily interact with the rest of this project.

This master thesis is the prolongation of the PhD thesis of Kaczmarek [7], Reynaud [1], Calvet
[2] and Thierry [3]. All of them studied virology. Kaczmarek used formal methods to de�ne
the behavior of malwares and gave a formal frame for the morphological detection of malwares.
Reynaud well studied the behavior of self-modifying malwares and the dynamic instrumentation of
them. Calvet continued the work of Reynaud and showed the veracity of using dynamic analysis
tools in order to catch self-modifying malwares. Finally, Thierry improved Calvet's and Reynaud's
studies and �nalized the frame for the preparation of the implementation.

Thus my experimental research topic aims to mix the techniques detailed in those thesis and
evaluates the whole method in order to determine if it is usable in a system handling a huge number
of software in a short period of time.

1Laboratoire lOrrain de Recherche en Informatique et Automatique
2Institut National de Recherche en Informatique et Automatique
3Agence National pour la Recherche
4http://binsec.gforge.inria.fr/

2

http://binsec.gforge.inria.fr/

Organization of the document Section 2 introduces the basic knowledges about hardware and
software architecture by looking inside an executable �le and the way it is handled by a machine.
Section 3 presents what is a reverse-engineering process in our context and the formal frame used
by the implementation. Section 4 discusses about the issues a disassembler is confronted to and
thus justifying the chosen method to implement a robust and e�cient dissembler. Then section 5
describes the implementation, followed by the test protocol and results in section 6. Finally section
7 will brie�y depict a panel of related work before concluding in 8.

2 Introduction to software and hardware architecture

Prior to detail how to disassemble an executable �le, the reader must be aware of some basic
knowledges about hardware and software architecture. Most of the computer around the world are
running Microsoft Operating System. According to NetMarketShare, more that 90% of computer are
on Microsoft OS for the year 2014. Also the main processor architecture is based on x86 architecture
family from Intel ; Microsoft OS is only compatible with x86 and x86_641 processor, this de�nitely
places this architecture as the most used. One of the primary goal of malwares authors is to infect
the maximum number of machines. Hence most of the existing malwares have been built to run on
this hardware and software architecture. So, naturally we choose to focus on it.

Hardware Like most processors, the x86 architecture inherited from the von Neumann model [9].
He described a generic machine with four main parts:

• The Processing unit is able to compute arithmetic or logic operation, and implicitly it
updates some �ags to get more information about the last computation, i.e.: over�ow �ag
indicating an arithmetic over�ow

• The Control unit is in charge of controlling the execution �ow by managing a program
counter (PC) pointing to the next instruction in memory to execute

• The memory which contains any needed bytes (code and data) to execute a program

• The Input/Output controller to handle input/output communication to external devices

Note on the memory : In modern processor, a running program sees the memory as it is alone
in it. This mechanism is handled by the OS which allocates virtual memory pages where the virtual
addresses are translated to physical one by the hardware with a Memory Management Unit
(MMU). Also, there is several level of memories like caches and some speci�c registers used to
speed up accesses to data. In our simplistic/idealistic view of a processor, I will only consider one
level of a big �at memory as it is the way a running program (a fortiori a malware) sees the memory.

Machine language Each existing family of processors has its own machine language. Machine
code must be seen as a sequence of bytes that the electronic hardware can understand. Machine
language is linked to a textual representation which is much more human friendly and called assembly
language. Assembly is described as an Instruction Set Architecture (ISA) and for the x86 family it

1They recently added the support for ARM, but this does not change statistics, x86 is still the most used
architecture

3

contains more than 700 instructions [10]. Indeed each time a new processor is added to the family
it adds its bunch of new features and also new assembly instructions.

The x86 ISA is built on the principle of Complex Instruction Set Computing (CISC), as opposed
to Reduced Instruction Set Computing (RISC) which includes less features. The x86 assembly
instructions have variable length with a maximum of 15 bytes, and do not need to be aligned on
power of 2 in memory. This ISA is then more �exible than RISC architecture, at the cost of possible
hijacks (cf section 4) and ambiguities.

The format of an instruction is presented by �gure 1. The pre�x add optional behavior to the
instruction like rep making the processor to repeat the current opcode until the register ecx reaches
0. There exists two styles for representing assembly, one from AT&T and one from Intel, here this
document arbitrary use the later.
Examples of opcode and operands are presented in table 1. In the example of the jump the operand
is 5 while the syntax says to jump 7 bytes. For historical reason, developers have in mind that the PC
is at the beginning of the instruction until the instruction is fully executed, while for the processor
the PC is at the end of instruction that it has just consumed. So the remaining 2 corresponds to
the size of the jump instruction: 5 + 2 = 7.

Pre�x OperandsOpcode

Figure 1: Instruction format in x86 assembly language

Opcode Operands Syntax Semantic

a3 00 00 00 00 mov eax, 0x0 Stores the 32 bits of value 0 into register eax
f4 hlt Stops the execution of the program
eb 05 jmp 0x7 Modi�es the PC as PC = PC + 0x7
55 push ebp Stores the value of the register ebp on top of the stack

Table 1: Example of x86 instructions

Executable �le Writing software in machine code is very di�cult and error prone. People would
prefer assembly language, or even higher level languages such as C or C++. Then their code must
be compiled into machine code to get an executable �le.

The structure of the executable depends on the OS, for Microsoft OS the format is named PE
(Portable Executable). It can be summarized as shown by table 2. Headers will contain a lot
of useful information for the program loader inside the OS, i.e.: the entry point (�rst instruction
to execute), the size of binary, the signature. Those information describe the executable �le and
despite of their values are common to every PE �le. The Section Table will contain the list of every
sections in the executable, but also their size and start address. A section is a portion of bytes
which can be data or code interchangeably. Named section (i.e.:.data, .text) are only signi�cant for
humans.

4

PE executable

Headers

Sections table

Sections
some code
imports
some data

...

Table 2: PE binary format

3 Reverse-engineering an executable binary �le

As mentioned above, to get an executable, a software must be compiled into machine code. Thus
the compilation process is to translate a program from a source language to a target language.
Generally the source language is from a high level of abstraction such as C, C++ ; meaning that
the program author does not have to care about the OS or architecture on which the �nal executable
will run.

Most of modern compilers transform the source code into an Intermediate Representation (IR).
Then the compiler performs some analyses and optimizations on this IR independently of the source
language and structure. One of this IR can have the form of a Control Flow Graph (CFG). This
is a graph where nodes are a sequence of instructions (called basic-block) and edges are possible
executable paths through those basic-blocks. Then the compiler transforms the IR into assembly
code and �nally to machine code when building the executable binary �le. An example of a C
code, the corresponding x86 assembly and the CFG are presented in �gures 2. To go further with
compilation please see The Dragon Book from Aho [11].

Reverse-engineering is the opposite process of the compilation as shown by �gure 3. And by
disassembling and CFG recovering it aims to reverse the last action of the compiler. This problem
has been a lot studied, however as Paleari et al [12] showed every disassembly are incorrect. To
reach such conclusion, they compared the instructions' semantic decoded by the disassembler with
the semantic cabled in the processor when executed the same instruction. And they observed some
di�erences.

In a �rst glance, it appears that disassembling is easy because it is only a matter of translating
an opcode into its textual representation. However the von Neumann architecture introduced in the
previous section allows to mix data and code. Also to decode a perfect disassembly of a program
P , every decoded bytes must be reachable by at least one execution path of P (de�nition 1).

De�nition 1 The perfect disassembly D of a non-self-modifying program P is for every addresses
a in [0; 232[: D =

⋃
{(a, decode(a, P))|P ()reachesa}

In general case, disassembling is undecidable, Calvet [2] gave the idea to reduce the halting
problem to the disassembling one. Let's take a program CP verifying that a path exists to an
address in an assembly code. For every non-self-modifying program P and address a, it returns
CP (P, a) = 1 if and only if there exists a path to reach a, otherwise CP (P, a) = 0. If P is a
program that do not need any input, and only contains the instruction hlt at address a. Then it is
the same as answering if P halts, which is known to be undecidable.

5

1 void main(int a) {
2 int b;
3 if(a == 0)
4 b = 1
5 else
6 b = 2;
7 }

(a) Exemple of a C code

1 0x401000: 55 push ebp
2 0x401001: 89 e5 mov ebp,esp
3 0x401003: 8b 45 08 mov eax, [ebp+0x8]
4 0x401006: 83 f8 00 cmp eax,0x0
5 0x401009: 75 07 jne 0x09
6 0x40100b: bb 01 00 00 00 mov ebx,0x1
7 0x401010: eb 05 jmp 0x07
8 0x401012: bb 02 00 00 00 mov ebx,0x2
9 0x401017: c9 leave
10 0x401018: c3 ret

(b) Example a possible x86 assembly version of the above C code
- intel syntax

(c) CFG corresponding of the code besides

Figure 2: Full example from C to the disassemble CFG through the assembly code

Disassembling code is undecidable for non-self-modifying code. Also, disassembling self-modifying
code is a harder problem, it is undecidable too.

It is very di�cult to reverse the compilation process, because when a binary �le misses a lot
of information, i.e.: there is no more variables. Also when dealing with malwares there is less
information as usual because their author stripped the executable ; they removed every symbol
from the binary just leaving the absolute necessary information to run the program. For example
there is no access to the symbol table anymore, or to the jump table for indirect branch.

Following are 3 main di�erent approaches to disassemble machine code. The two �rst are static
methods ; they statically analyze the code like a compiler would do. The third approach is a
dynamic analysis based on the execution of the program. The linear sweep disassembling method
is given as reference, while the two others approaches prepare the implementation.

IDA pro1 is the commercial reference for disassembling. It embeds great features and graphical
interface but uses a lot of heuristics to detect some elements. It only uses static methods to
disassemble and is not very robust with malwares.

3.1 Linear sweep disassembler

The most known linear sweep disassembler is GNU/objdump2. It takes a binary and extract the
entry point from the header and then linearly disassembles the �le by �nding the n+ 1 instruction
at the address of instruction n + the size of instruction n. An example is shown by �gure 2b where

1https://www.hex-rays.com/products/ida/
2https://sourceware.org/binutils/docs/binutils/objdump.html

6

https://www.hex-rays.com/products/ida/
https://sourceware.org/binutils/docs/binutils/objdump.html

Figure 3: Compilation vs Reverse-engineering

instruction leave is found after the mov ebx, 0x2 at the address 0x401012 which is (address of the
mov) 0x401012 + 5 (size of the mov).

This technique works well to disassemble well-aligned code, but ca not be used to distinguish
data and code as it will disassemble any bytes after the entry-point. This method is presented as it
is taken as a reference to compare the next disassembling method.

3.2 Recursive traversal

Linear sweep disassembler are not very robust, previous works use the recursive traversal of the
binary and I will present a modi�ed version in the implementation which is more e�cient. This
consists in disassembling the binary �le while taking care of the possible execution �ows. Depending
on the instruction's type, the decoded next one will be found linearly after : if the type is a sequence
�ow instruction (i.e.: mov, jne) ; or at a target destination depending on the operand : if the
instruction's semantic modi�es the execution �ow (i.e.: jmp, jne).

The algorithm 3.1 of a recursive traversal disassembler is given by Thierry [3]. The successor
function is in charge of computing all the next possible instruction of I depending on the type of I.

This technique works well to disassemble any binary code, and because it takes care of the
control �ow, it allows to recover a CFG at the same time as disassembling (presented in �gure
2c). With the assumption that any bytes not decoded during the recursive traversal is data, such
disassembler are able to di�erentiate code and data.

However this algorithm can lost track of the control �ow when dealing with indirect branch or
some obfuscations (see section 4) . In practice, this algorithm is not very e�cient when dealing

7

Algorithm 3.1: Recursive traversal of a program P

Input : A program P composed and its entry-point
Output: D the perfect disassembly of P : a set of (address, instruction)
function RecursiveDisassembler(P, ep)

// Starting disassembling at the entry − point
return RecursiveDisassemblerAux(ep, ∅, P)

end function

function RecursiveDisassemblerAux(addr, D, P)
instr ← decode(addr, P)
D ← D ∪ {(addr, instr)}
// Recursively disassemble all unknown successors
foreach addr′ ∈ successor(I) do
if (addr′, ∗) /∈ D then

D ← D ∪RecursiveDisassemblerAux(addr′, D, P)
end

end
return D

end function

with program containing a huge number of instructions : big code analysis. Indeed, it will make
a recursive call at each instruction generating a lot of movements on the stack, but the logic is
more easily understandable than in my modi�ed version presented in the implementation section
5.2 which uses an iterative algorithm to perform the same task.

3.3 Dynamic reconstruction

The previous algorithm 3.1 statically disassemble the binary �le. This is opposed to a dynamic
analysis which executes the code. There is three possibilities to dynamically analyze the code :

• Emulation : the code is executed in an emulator such as QEMU/TEMU1, this method is
used by the BitBlaze platform [13].

• Debugging : the code is executed in debugging mode, the instrumenting tool will use the
Trap Flag of the processor to make it stop after each execution, or insert trap instruction in
the code to stop the execution (GNU/gdb2)

• Instrumentation : the code is executed directly on the processor, but each instruction of
the initial program is surrounded by added ones that allow the instrumentor to capture the
evolution of the context (e.g. registers, memory, PC ...) Pintool[14]

Some of the mentioned references mix those techniques to have better results, making the frontier
between them not so clean.

The goal of such techniques is to get an execution trace containing the sequence of the e�ectively
executed instruction. Then depending on the tool, the analysis is done while executing the program

1http://wiki.qemu.org/Main_Page
2https://sourceware.org/gdb/

8

http://wiki.qemu.org/Main_Page
https://sourceware.org/gdb/

to avoid unwanted behaviors [15] or a posteriori to the execution [2] by analyzing the trace. The
execution trace depends on the input arguments, or from the environment at the time it is executed.
Hence one execution might not be enough to well represent the program and to fully analyze the it.
For example the malware Jerusalem1 (1987) only �re a malicious behavior upon every occurrence
of Friday the 13th. Bringing the need to tweak the system clock to get a relevant execution trace.
Some studies will execute the program several times while varying the input to ensure the discover
of new execution paths [16].

Reynaud [1], Calvet [2] and Thierry [3] have a lot studied dynamic execution in order to analyze
malwares, and Calvet gave a good explanation of the usefulness of such technique when dealing with
malwares. Indeed they are protected by several levels of self-modifying code (cf: section 4.3), and
the execution trace helps �attening them (cf: section 5.1) Moreover, Calvet showed that getting
only one execution trace per running process is also enough for detecting malwares.

The actual tracer build from previous work records for each executed instruction the explicit and
implicit impact on the system; i.e.: push ebp explicitly pushes the register ebp on top of the stack,
and implicitly decrements esp by 42. This has the advantage of being exhaustive and well represent
the evolution of the system. However, this makes a huge trace �le with a lot of information that
might not be needed for an automatic CFG recovery tool, and so decrease the performance. In the
implementation section 5.1, I will present a modi�ed version I managed to use in coordination with
the team engineer to improve the performance.

Besides the usefulness, malwares authors are aware of such analysis techniques and instrumenting
malwares is a bit more complicated than usual softwares. Indeed their authors add some protections
to allow the malware to detect if it is being executed in a controlled environment, i.e. : by measuring
the execution time, by detecting breakpoints or by looking for speci�c register keys in the Microsoft
OS. Also, malwares use techniques to loose the trace, i.e.: by creating a new process, or by injecting
code in a running process. Thus, a good code instrumentation tool has to be able to tackle those
anti-reversing techniques and ensure the malwares will not detect it.

Dinaburg et al [17] de�ned this property as transparency. A dynamic instrumentation tool must
be invisible from the execution of the initial program. The implementation presented in section 5.1
is e�cient and gives enough transparency to instrument malwares.

4 Pitfalls in disassembling

Disassembling is not an easy task as we have previously seen this problem is undecidable, and
malware authors used of imagination to make the reverse-engineering process as much hard as
possible. I try here to list common problems (non-exhaustive) and how the solution I implemented
tackle them.

4.1 Common disassembling issues

Code and Data di�erentiation This issue has been well described in the literature [18], and it
is known to be undecidable.

However I am not very concern about this issue. By using the recursive traversal algorithm
previously detailed we follow the possible execution path. Thus ensuring that we decode only

1https://en.wikipedia.org/wiki/Jerusalem_%28computer_virus%29
2In x86 architecture the stack growths in reverse, starting at the last possible address.

9

https://en.wikipedia.org/wiki/Jerusalem_%28computer_virus%29

instructions.

Indirect branch An indirect branch is a branch in the assembly code where the target is stored
in a register, thus the value is only known at execution time and maybe not known during a classical
analysis. It is worth noting that all targets from the example should be found in a jump table stored
in the binary. However what is true for normal program compiled with a standard compiler, is
not when dealing with malwares. Obfuscations tools may have removed or replaced jump table by
something else in the code. An example of an indirect jump is given by �gure 4.

Listing 4a presents a C code that when compiled create an indirect branch. At line 9 in 4b the
instruction jmp eax will connect the execution �ow to the address stored in the register eax during
the run time.

Figure 4c shows the CFG reconstructed by a simple recursive traversal disassembler. The jump
eax is the last instruction of the lefter block, and the disassembler is stuck at this point.

Figure 4d shows the same CFG but reconstructed by a recursive traversal disassembler with the
help of an execution trace. The block color changed to pink exhibiting the fact that the contained
instructions have been executed during a dynamic analysis. We observed here that there is a target
jump for the jmp eax instruction (present in the second block from the top). Thus validating the
minor improvement when an execution trace is used in conjunction of a static analysis. However,
there are still missing possible targets for the indirect branch.

Figure 4e shows the same CFG reconstructed by a recursive traversal disassembler with the help
of an execution trace and the help of the symbolic evaluation detailed in section 5.3.1. The green
color exhibits the newly added block and at this point, showing the full CFG corresponding to the
C/Assembly code from the example.

As mentioned earlier, indirect branch are a major problem when disassembling, this problem
is partly solved by the use of dynamic analysis. And might be completely solved by much more
complex computation discussed later.

System procedures System calls are used by software developer to interact with the environment
such as interacting with input/output device, managing stored �les Hence, they are particular
call to the API1 provided by the OS on which the software is designed to be running. Thus they
are OS dependent, and it is the main reason why an executable is not portable.

As their implementation are part of the OS, the code is not available in the studied binary �le.
Managing a syscall 's table is very time consuming, error prone, and must take care of the evolution
of OS, thus it is not implemented by the disassembler in section 5. But it can be found in IDA pro.

When disassembling in a static way, and without such table, an assumption is made on the
execution of the program. The function will return after the call/syscall instruction, which is the
normal behavior.

By using an execution trace, a static disassembler is able to �nd the address of the e�ective
return address.

4.2 Obfuscations

Previous disassembling issues were common to any disassembler. In addition, malwares use other
techniques to make the reverse-engineering process harder. Collberg et al. wrote a book [19] which

1Application Programming Interface

10

1 enum E { Zero, One,
2 Two, Three, Four

};
3
4 int fun(E e) {
5 int res;
6
7 switch(e) {
8 case Zero :
9 res = 0; break;
10 case One :
11 res = 1; break;
12 case Two :
13 res = 2; break;
14 case Three :
15 res = 3; break;
16 case Four :
17 res = 4; break;
18 }
19 return res;
20 }

(a) switch statement do indirect
jump using a jump table

1 0x401290: 55 push ebp
2 0x401291: 89 e5 mov ebp,esp
3 0x401293: 83 ec 04 sub esp,0x4
4 0x401296: 83 7d 08 04 cmp ebp+0x8],0x4
5 0x40129a: 77 39 ja 0x4012d5
6 0x40129c: 8b 45 08 mov eax,[ebp+0x8]
7 0x40129f: c1 e0 02 shl eax,0x2
8 0x4012a2: 8b 80 00 30 40 00 mov eax,[eax+0x403000]
9 0x4012a8: ff e0 jmp eax
10 0x4012aa: c7 45 fc 00 00 00 00 mov [ebp-0x4],0x0
11 0x4012b1: eb 22 jmp 0x4012d5
12 0x4012b3: c7 45 fc 01 00 00 00 mov [ebp-0x4],0x1
13 0x4012ba: eb 19 jmp 0x4012d5
14 0x4012bc: c7 45 fc 02 00 00 00 mov [ebp-0x4],0x2
15 0x4012c3: eb 10 jmp 0x4012d5
16 0x4012c5: c7 45 fc 03 00 00 00 mov [ebp-0x4],0x3
17 0x4012cc: eb 07 jmp 0x4012d5
18 0x4012ce: c7 45 fc 04 00 00 00 mov [ebp-0x4],0x4
19 0x4012d5: 8b 45 fc mov eax,[ebp-0x4]
20 0x4012d8: c9 leave
21 0x4012d9: c3 ret

(b) Assembly of the beside C example with an indirect jump at line 9

(c) CFG extracted with a recursive transversal

(d) CFG extracted with a recursive transversal and an
execution trace

(e) CFG extracted with a recursive transversal and an execution trace and using symbolic evaluation tech-
nique

Figure 4: Example of an indirect jump

11

well described a lot of them. As the list is quite long, I will here describe some of them and explain
how to tackle them.

It must be noted that obfuscation's techniques are not only used for bad purposes. They are
also used by legitimate companies to protect their intellectual property. Indeed, when the business
product of an enterprise is based on the sale of a software, they don't want that hackers disassemble
it to get a pro-version, or retrieve cryptographic keys, or make a similar software based on it.

Instruction overlapping This obfuscation occurs when at least one byte is used in more than
one instruction. An example is shown in listing 5a for the disassembly of a linear sweep disassembler
and 5b for the disassembly of a recursive traversal one. At line 2, there is the instruction jmp +1
at address 0x401027, its e�ect will be to connect the execution �ow at 0x401027 + 1 = 0x401028.
Thus the next executed instruction will be inc ebx. So, jmp +1 and inc ebx shares one byte at
address 0x401028, they are two overlapping instructions.

1 0x401022: bb 00 00 00 00 mov ebx,0x0
2 0x401027: eb ff jmp +1
3 0x401029: c3 ret
4 0x40102a: 83 c3 42 add ebx,0x42
5 0x40102d: c3 ret

(a) Disassembled by a linear sweep disassembler

1 0x401022: bb 00 00 00 00 mov ebx, 0x0
2 0x401027: eb ff jmp +1
3 0x401028: ff c3 inc ebx
4 0x40102a: 83 c3 42 add ebx,0x42
5 0x40102d: c3 ret

(b) Disassembled by a recursive traversal disas-
sembler

Figure 5: Example of overlapping instruction

Comparing the two disassembly in �gure 5, it is worth noticing that a linear sweep disassembler
is wrong as it sees the instruction at line 4 as unreachable while the recursive traversal �nd the good
execution path. Linear sweep disassembler are lost by this obfuscation.

To go further Jämthagen et al [20] shows the possibility to build a code with a complete hidden
execution path. This is done by playing with the �exibility of the nop1 instruction which do nothing
but can have several bytes as operands. Meaning that a linear sweep disassembler will see a sequence
of nop instructions while the processor or a recursive traversal disassembler will decode the right
sequence of instructions.

By using a recursive traversal algorithm, a disassembler will follow jumping instructions thus
following the overlapping instructions.

call without ret, or ret without call The call instruction is used to enter in a function, and
the ret instruction corresponds to the return statement. Normal behavior is when a call instruction
is found, the next one will be in a function and then until a ret instruction. However this is
not always true, especially with malwares. Sometimes, call are used as a jump instruction, and
the pushed program counter on top of the stack may be modi�ed by further execution. Or a
sequence like : call 5 ; pop eax will allow a program to access the value of the program counter
and store it in eax. The inverse is also true, a ret can be used as a jump like in the sequence:
mov eax, 0x42 ; push eax ; ret. Those hijack the usage of call/ret by not entering in/leaving a
function.

1no-operation instruction

12

To tackle this issue, a static disassembler must simulate the operation made on a stack. And
obviously a dynamic analysis has no problem to follow the execution �ow.

Dead Code This obfuscation refers to the addition of unreachable code or dead code. As shown
by �gure 6, a linear sweep disassembler will disassemble the listing of the �gure 6a while the �gure
6b shows what a recursive disassembler does. Thus the instruction at line 3 in 6a will never be
executed and so is considered as dead code. In this example if the disassembler returns this dead
code, an analysis acting at a higher level of abstraction for register eax (i.e.: by computing the
possible values for eax) will return 0 (sub is the subtraction), but with dead code elimination this
same analysis will return 42 which is the true value.

1 0x401022: b8 42 00 00 00 mov eax,0x42
2 0x401027: eb 03 jmp +5
3 0x401029: 83 e8 42 sub eax,0x42
4 0x40102c: c3 ret

(a) Disassembled by a linear sweep disassembler

1 0x401022: b8 42 00 00 00 mov eax, 0x42
2 0x401027: eb 03 jmp 5
3 0x40102c: c3 ret

(b) Disassembled by a recursive traversal disas-
sembler

Figure 6: Example of dead code

This obfuscation is also ine�cient against a recursive traversal disassembler which will see that
dead code as data.

Opaque Predicate An opaque predicate is related to a test condition which always return the
same value for any execution of the program. A very trivial example one is shown by the �gure 7.
To summarize this assembly code the register eax is equal to 2 + 2 = 4 at line 4. And trivially at
line 5, the test will always be true and only one branch of this jump can be taken (je is for jump if
equal), and the sub will never be executed.

Same as dead code, opaque predicate will bring automatic analysis of the possible values for
register eax to a wrong result.

The mentioned example is very simple but well illustrates the concept. Even if a basic static
analysis (i.e.: constant propagation [11]) can tackle the example, there is much more complex opaque
predicate. One can be de�ned using the little theorem of Fermat. It says that for every positive
integer i: i17 = i mod 17. This can easily be seen by a human analyst aware of such theorem,
however this is complicated for a static automatic process.

The trace gives us the good execution path (in pink), but the further static analysis will add
the wrong one. In �gure 7b, the static analysis added the white node to the pink ones extracted
from an execution trace.

To gain e�ciency I will leave my disassembler falling into this pitfalls. Thus the human analyst
or the morphological analysis will need to challenge it. The loss of performances would come from
a solver to which the static disassembler would need to interrogate for each conditional jump.

Control �ow �attening This obfuscation aims to �atten the CFG. An example is shown by
�gure 8 where the two assembly from listing 8a8c are semantically equivalent. However one uses
a jmp eax as a central point to redirect the �ow to the next instruction whose make the CFGs on
�gure 8d the �atten version of �gure 8b.

13

1 0x401022: b8 00 00 00 00 mov eax,0x0
2 0x401027: 83 c0 02 add eax,0x2
3 0x40102a: 01 c0 add eax,eax
4 0x40102c: 83 f8 04 cmp eax,0x4
5 0x40102f: 74 03 je +5
6 0x401031: 83 e8 42 sub eax,0x42
7 0x401034: c3 ret

(a) disassembly with an opaque predicate at line 4-5

(b) CFG corresponding of the code besides

Figure 7: Example of opaque predicate

This obfuscation can be problematic for the morphological detection procedure if the reference
is not �attened in the database and the same malware is newly propagated �attened, it will not be
possible to detect the malware.

The �atten version contains an indirect branch which bring the need of an execution trace to
properly recover the CFG (pink node).

4.3 Self-modifying code

As explained in previous section, the separation between code and data is not very clear in x86 PE
executable. This allows a program to modify its own code in the memory at run-time.

Then any program that creates new instruction above its own initial instruction or somewhere
else in the memory and then branch the control �ow to it, is considered to be self-modifying. Listing
9a shows a small example. The instruction at line 3 writes the content of the register ebx at the
address pointed by eax, so the code become as presented by listing 9c.

First analysis of listing 9a would suggest an in�nite loop with the jmp that connects the execution
�ow on it self. But the instruction at line 3 modi�es the address pointed by the register eax with
the content of register ebx, thus modifying the address 0x401012 with the value 0xf4 making the
program terminates.

Self-modifying code can also be seen as an obfuscation technique. Also it is not only used for
bad purposes. For example, the booloader of windows uses it to start the entire operating system.

14

1 0x401006: 83 fb 00 cmp ebx,0x0
2 0x401009: 75 07 jne 0x401012
3 0x40100b: bf 00 00 00 00 mov edi,0x0
4 0x401010: 47 inc edi
5 0x401011: f4 hlt
6 0x401012: bf 01 00 00 00 mov edi,0x1
7 0x401017: 83 fb 01 cmp ebx,0x1
8 0x40101a: 75 f4 jne 0x401010
9 0x40101c: 83 c7 02 add edi,0x2
10 0x40101f: eb f0 jmp 0x401011

(a) Sample of an assembly that modify edi depending
on ebx

(b) CFG from the above assembly code

1 0x40100b: ff e0 jmp eax
2 0x40100d: 83 fb 00 cmp ebx,0x0
3 0x401010: 75 07 jne 0x401019
4 0x401012: b8 20 10 40 00 mov eax,0x401020
5 0x401017: eb f2 jmp 0x40100b
6 0x401019: b8 35 10 40 00 mov eax,0x401035
7 0x40101e: eb eb jmp 0x40100b
8 0x401020: bf 00 00 00 00 mov edi,0x0
9 0x401025: b8 2c 10 40 00 mov eax,0x40102c
10 0x40102a: eb df jmp 0x40100b
11 0x40102c: 47 inc edi
12 0x40102d: b8 34 10 40 00 mov eax,0x401034
13 0x401032: eb d7 jmp 0x40100b
14 0x401034: f4 hlt
15 0x401035: bf 01 00 00 00 mov edi,0x1
16 0x40103a: 83 fb 01 cmp ebx,0x1
17 0x40103d: 75 07 jne 0x401046
18 0x40103f: b8 4d 10 40 00 mov eax,0x40104d
19 0x401044: eb c5 jmp 0x40100b
20 0x401046: b8 2c 10 40 00 mov eax,0x40102c
21 0x40104b: eb be jmp 0x40100b
22 0x40104d: 83 c7 02 add edi,0x2
23 0x401050: b8 34 10 40 00 mov eax,0x401034
24 0x401055:eb b4 jmp 0x40100b

(c) Same sample as besides but after an CFG flatten-
ing phase

(d) Flatten version of the CFG in 8b and correspond-
ing to assembly 8c

Figure 8: Flattening obfuscation example

15

1 0x401006: bb f4 00 00 00 mov ebx,0xf4
2 0x40100b: b8 12 10 40 00 mov eax,0x401012
3 0x401010: 89 18 mov [eax],ebx
4 0x401012: eb fe jmp 0x401012

(a) the initial code

(b) CFG corresponding to the wave 0 (initial code)

1 0x401006: bb f4 00 00 00 mov ebx,0xf4
2 0x40100b: b8 12 10 40 00 mov eax,0x401012
3 0x401010: 89 18 mov [eax],ebx
4 0x401012: f4 hlt

(c) the code after self-modification

(d) CFG corresponding to the wave 1 (modified code)

Figure 9: Example of self-modifying code

Figure 10: Overview of packed executable principle

And, this is used by JIT1 compiler such as lit the JIT from LLVM2.
To obfuscate their code with self-modi�cation, malwares authors use an external tool called

packer. Figure 10 illustrates the general process of a packed executable. The packed program is
�rst loaded into memory like any other program, then the unpacking routine is executed. It allocates
memory and copies the unpacked code in it and �nally connects the execution to the entry-point
of the unpacked code. The �nal unpacked code is referred as the payload which will contain the
malicious code.

There is di�erent techniques for packing, the more common are compression, or encryption.
Hence the original binary contains a portion of data that is compressed or encrypted and the
unpacking routine has in charge of decompressing or decrypting it in the allocated memory.

Some packers use several unpacking steps before actually extracting the payload. In an unpub-

1Just In Time compiler - compiling the code on the �y
2LLVM is a compiler suite coming to replace GNU/GCC http://www.llvm.org

16

http://www.llvm.org

lished article Bonfante et al.[21] show they are able to �nd packers with up to 635 unpacking steps
before reaching the payload and that 53% of their testing corpus contains 2 unpacking steps.

Because of all of this steps and the fact that the payload is not in clear assembly in the initial
binary, every static disassemblers are not able to retrieve the payload. Indeed they will only disas-
semble the �rst unpacking routine. Thus, unpackers use the previously mentioned dynamic analysis
to trace packed code with the goal to retrieve the original code from this execution trace.

The notion of waves Guizani et al [22] �rst introduced the concept of waves to formalize all the
unpacking steps. The idea is that each wave contains only non-self-modifying code ; and contains
all the instructions present in memory when switching wave. It contains non-self-modifying code,
because an instruction can not be written in memory and executed in the same wave. Hence each
wave starts when the control �ow is connected to a newly written instruction. The construction of
the set of waves is a monotonic sequence, the control �ow never go back to a previous wave even if
it is linked to an already executed instruction in the wave n− x, the execution of the instruction is
now considered to be in the wave n. The execution of an instruction is now de�ned by its address
and its wave. Meaning if a disassembler would build the full CFG of the full execution of all wave, a
same instruction at a same address could be present several times if it is executed in several waves.

As a wave is a non-self-modifying part of the packed program, it can be independently analyzed
by a disassembler if the unpacker provides the list of bytes in memory (a snapshot) at some point
of the execution of the wave, an entry-point (typically the �rst instruction of the wave) and maybe
an execution trace to improve results.

On the example from �gure 9, there is two waves, one is in 9a where the entry-point is 0x401006
and second is in 9c where the entry-point is 0x401012. Their corresponding CFG are presented by
9b and 9d.

Reynaud [1] showed that it is more pertinent for an unpacker to take a snapshot at the start
point of the wave. Indeed by taking it at the very beginning he ensures all the instruction needed
to execute the wave are present in memory. A packer author familiar with usual dynamic analyze
technique could overwrite the executed code before leaving the current wave, making impossible the
possibility to retrieve it.

Thierry [3] de�ned the notion of perfect CFG to schematize a wavy self-modifying program.
This particular CFG built at the wave level illustrates the passage from a wave to another by taking
care of the execution level and the written level.

For a malware detector, this formalization in waves is based on the assumption that a wave in the
set contains the whole code of the payload. And as pointed by Calvet [2], for a majority of packers
the malicious code is present in the last wave; or at least the payload is fully present in a wave. So
executing the malware ones in a controlled environment to reach the payload seems enough. And
the reconstruction of the CFG of that payload is done in the same way as any non-self-modifying
program.

5 CoDisAsm: a concatic disassembler

Previous sections described the frame needed for the implementation and some challenging obfusca-
tions. This master thesis topic aims to apply and experiments the presented theory here and more
detailed by Reynaud [1], Calvet [2] and Thierry [3].

The �gure 11 presents the global schema of the whole project.

17

Figure 11: Schema of CoDisAsm

CoDisAsm stands for Concatic Disassembler for CONCrete path execution and stATIC disas-
sembly. It joins the use of a dynamic instrumentation tool (TraceSurfer) for the concrete path
execution and unpacking features with a static disassembler to recover the CFG. Hence this sec-
tion presents my implementation of the static disassembler in conjunction with the improvements I
managed to add in the tracer developed by previous work.

To complete the project I implemented two extensions presented in 5.3. First one is the inter-
action with the BINSEC1 platform, as this master thesis is also part of the corresponding ANR2

project. The second extension is the implementation of a concept previously formalize by Thierry[3].
Those two additions are left in extension at the moment as they require further investigations.

5.1 TraceSurfer

The project TraceSurfer has been started by Reynaud[1] and improved by its successor Calvet[2]
and Thierry[3]. Its name is based on the concept of dynamic instrumentation (trace) and the
self-modifying code representation called wave (surfer) introduced in section 4.3.

It aims to unpack malwares by executing it in a Virtual Machine (VM). For each analyzed
malware, the VM is reseted to a fresh installation of the target Operating System ; here Microsoft
Windows. It is important to use a clean install to ensure that malwares do not interfere with each
other.

Then the machine code is instrumented by Pintool[14]. It exists several tools to instrument code
(i.e.: DynamoRIO3, Valgrind 4, DynInst 5). However a study demonstrated Pintool is relatively

1http://binsec.gforge.inria.fr
2Agence National pour la Recherche
3http://www.dynamorio.org/
4http://valgrind.org/
5http://www.dyninst.org/

18

http://www.dynamorio.org/
http://valgrind.org/
http://www.dyninst.org/

transparent from a semantical point of view [23] ; meaning malwares will not be able to detect it by
looking on the respect of the instructions' semantic. Also it is easy to tune it, and its been designed
by Intel itself as they use it to simulate new instructions when building chips. Moreover, Pintool
handles multi-threads and can follow forked processes out-of-the-box.

Furthermore, malwares incorporate a lot of anti-reverse-engineering features. Those one are
designed to detect if they are executed in a controlled environment such as a Virtual Machine.
Thus Pintool has been previously tweaked to integrate countermeasure features to fool malwares,
Ferrie [24] wrote a survey on such techniques. Just to illustrate some countermeasures that are
implemented in TraceSurfer (non-exhaustive):

• Timing constraint :

> Malwares check the execution time between two points in the program

> Clock system calls are detecting by the tracer and a reduced value is returned to the
malware depending on the tracing speed.

• Process injection :

> Malwares create a new process, or use a already running process they do not own and
inject code in it

> Fork system call detection to follow the execution in the new/infected process

• Hardware breakpoint detection :

> Malwares look at speci�c registers in the processor to see if the TrapFlag, or some debug
registers are set to an address

> Detection of access to those speci�c registers or TrapFlag and a fake value is returned
to the malware

• Software breakpoint detection :

> Identical but breakpoints are set on the OS

> Not used by TraceSurfer

The initial output from TracerSurfer was an execution trace �le in a homemade binary format
representing the full execution of the malware. It contains for each instruction:

• Wave of execution

• Address in memory

• Opcode

• Eery explicit and implicit impact on the system when executing it. As a remember impact are
accesses and modi�cations of registers/memory cells implied in the execution of the instruction
(i.e.: push ebp explicitly pushes the register ebp on top of the stack, and implicitly decrements
esp by 4).

Also for each new waves, TraceSurfer takes a snapshot of the memory and reconstruct a stan-
dalone executable binary �le (PE format) starting at wave 1 ; wave 0 is the original executable.

Thus a static disassembler can, for each waves, take the binary corresponding to the desired
wave, the execution trace �le then disassemble the wave and reconstruct the CFG.

19

Improvements Experiments showed very poor performance ; the tracing time was very long and
the disassembling of waves too. It was necessary to parse the whole �le seeking for the good wave
and skipping non-needed information.

Then I suggested to add minor changes. First modifying Pintool to stop recording the impact
of instructions on the system ; leaving only the wave, addresses and opcodes. Those removed
information were not necessary for our static disassembler and performance strongly increased. For
example, in previous version the packer Armadillo took days to unpack and now it takes only few
hours to �nish in the new version (this packer was a commercial one and is well-known to be hard
to reverse-engineer).

My second proposition was to split the execution trace �le per wave. Indeed, the disassembler
only disassemble one wave at a time, so it does not need the whole execution trace especially when
a packer has a lot of waves.

In previous version, TraceSurfer output the whole set of instructions really executed. Meaning
that when the code is a loop, the execution of the loop was �atten into the trace �le, or when an
instruction was pre�xes by rep the instruction was in the �le the number of time the processor
executed it. My last suggestion to help the disassembler was to modify the tracer to make it return
the partial CFG it actually executed. In examples from previous section 4, the pink nodes and the
edges linking them was extracted by TraceSurfer ; the disassembler just had to �ll the undisclosed
paths.

With this three minor modi�cations implemented by the engineer from CARTE crew, TraceSurfer
has less work to do and returns smaller �les for the disassembler reducing the tracing time and the
whole process time.

5.2 The disassembler

The second block of the project is the disassembler. It aims to statically disassemble the remaining
control �ow not taken during the dynamic analysis from the tracer. And obviously it is also able to
disassemble a binary �le without a trace �le, but with less accuracy when dealing with malwares.

As input, CoDisAsm needs a binary corresponding to the wave which will be disassembled and
an execution trace �le. It �rst follows the trace as we are sure that the instruction contained in it
are reachable, so are part of the �nal CFG.

It uses the recursive traversal approach describes before to look over the partial CFG extracted
by TraceSurfer. Then each time a conditional jump is found and one branch is undisclosed it
statically explores it by depth �rst until a stop point is found. A stop point can be of di�erent
nature:

• The instruction is already in the CFG

• The instruction is hlt, ret or int

• The instruction is a System Call

• The instruction is invalid

If the instruction is already in the CFG, it means the exploration of this control path is complete.
If it reaches a ret or int, it can not statically know what would be the next instruction. Indeed
this disassembler does not simulate the stack movements, so it is not able to tell what would be
the popped address when a ret arises. Similarly for int, the disassembler does not simulate the

20

speci�c interruption registers. Those two choices are imposed by the constraint of e�ciency. If the
instruction is a system call, the target address will not be part of the binary and the disassembler
can not continue to disassemble at an unknown address. However I choose to keep the assumption
that the program will return at the next instruction linearly found. This is legitimate by the fact
this is the normal behavior. Hence the disassembler will not take a wrong path in most cases, which
is worthwhile for the morphological detection of malwares. Also if the instruction is not valid, it
trivially stops. This could happen if, for example, the static disassembler follows the wrong branch
of an opaque predicate (cf section 4.2) resulting in some places in memory with junk bytes.

The algorithm presented in section 3.2 is recursive. As a matter of performance, I modi�ed
it to make it iterative. Indeed, when dealing with large binary executable the recursive function
call builds a stack frame to store arguments, return address, backup of the stack pointer and local
variables which brought me a stack overhead usage.

Thus my new algorithm is presented in 5.1. To make it iterative and continue to do the recursive
traversal, each new possible target address needs to be stored (see delayed in the algorithm) to
discover conditional branch later while continuing until a stop point. Then when the latter is
reached, it starts again from a new address found in the set of unexplored addresses.

Algorithm 5.1: Recursive traversal in iterative fashion

Input : The program P to disassemble and an execution trace T
Output: D the perfect disassembly of P ; a set of (address, instruction)
function disassemble(P, T)

D ← ∅
foreach instruction I in the trace do
foreach addr ∈ successor(I) do

if (addr, *) /∈ D then
D ← D ∪ explore(P, addr,D)

return D
end function
function explore(P, addr, D)

delayed← {addr}
while ¬empty(delayed) do
addr ← pop(delayed)
while addr is valid ∧(addr, ∗) /∈ D do

I ← decode(addr, P)
D ← D ∪ (addr, I)
if ¬I is a stop point then

if I is a sequential instruction or is a conditional jump then
addr ← addr + size(I)

if I is a conditional/unconditional jump or is a call then
delayed← delayed ∪ {computeTarget(I)}

return D
end function

21

As a matter of simplicity, I removed wave information from the algorithm as the disassembler is
statically disassembling only one wave at a time. Nevertheless to ful�ll conditions of the methods,
the addr are a pair composed of (wave, addr), this is useful to disassemble many waves ; available
as an extension of the disassembler. The multiple wave extension, just repeat the algorithm 5.1
from the wave 0 to the wished one. The connection between waves is done by looking for the
correspondence between the last instruction of wave n from the corresponding execution trace �le
and the �rst instruction of wave n+ 1 also from the corresponding execution trace �le.

5.3 Extensions of CoDisAsm

5.3.1 Interaction with BINSEC Platform

The BINSEC ANR project in which this master thesis is included aims to build a powerful bi-
nary analysis software. It takes its origin in the automatic test input generation where the main
problematic is to compute the set of possible input values to pass as argument to a program in
order to recover every possible execution paths. Even if malwares do not need arguments to run,
our objectives are the same disassembling and reconstructing the complete CFG from a binary.
Dynamic Symbolic Evaluation[25] (DSE, also called concolic execution) emerged from this research
area. This describes a method to disassemble and reconstruct a binary �le from multiple executions
of the program with the help of Symbolic Evaluation (SE). The latter is a complex computation
technique, and it helps computing the di�erent input values.

Malwares may contain indirect jump not associated with a jump table (section 4). Determining
the possible values and discovering new paths to add in the CFG would make the morphological
analysis more accurate. In that way, SE can help to determine all the possible values for the register
eax at the program point of the jump.

The present study is a conjoint work between Robin David currently in a PhD position at the
CEA1 working full time on BINSEC and myself.

First I will introduce the concept of Symbolic Evaluation before explaining my implementation
in CoDisAsm and the problem we faced.

Symbolic evaluation The approach of the symbolic evaluation is to build a symbolic value for
each interesting register/memory address at each point of an execution path [26], and other element
are kept as concrete value.

A symbolic value is a complex formula representing the evolution of the symbolic value along
an execution path. A concrete value is the static value of an element, similarly as a constant at a
precise program point. The formula is built by keeping track of the control �ow and the evolution of
each symbolic values over this control �ow. Then the formula is used to feed a SMT2 solver which
returns values that satisfy this formula. An example is given in the following table 3.

The example of table 3 is extracted from an inspired code similar to the switch in �gure 4a. The
goal here is to retrieve every possible values for register eax in the last instruction jmp eax in order
to �nd the possible target of this unconditional jump. The Input Symbolics column represents the
element we choose to keep as symbolic. Hence each symbolic values have their formula represented
all the way in the execution path.

1Commissariat à l'Energie Atomique
2Satis�ability Modulo Theories

22

In
st
ru
ct
io
n
s

In
p
u
t
S
y
m
b
ol
ic
s

In
p
u
t
C
on
cr
et
es

F
or
m
u
la
s

p
u
sh

eb
p

eb
p

∅
m
o
v
eb
p
,
es
p

eb
p
,
es
p

eb
p
=

es
p

m
o
v
ec
x
,
42

eb
p
,
es
p

ec
x
=

42
eb
p
=

es
p

c
m
p
[e
bp

+
8
],

4
eb
p
,
es
p
,
[e
bp

+
8]

ec
x
=

42
eb
p
=

es
p

ja
0x

80
4
8
49

4
eb
p
,
es
p
,
[e
bp

+
8]

ec
x
=

42
eb
p
=

es
p

(a
n
d
p
at
h
co
n
st
ra
in
t
[e
bp

+
8]

<
8
)

su
b
ec
x
,
40

eb
p
,
es
p
,
[e
bp

+
8]

ec
x
=

2
eb
p
=

es
p

m
o
v
ea
x
,
[e
bp

+
8
]

eb
p
,
es
p
,
[e
bp

+
8]

ec
x
=

2
eb
p
=

es
p
,
ea
x
=

[e
bp

+
8]

sh
l
ea
x
,
2

eb
p
,
es
p
,
[e
bp

+
8]

ec
x
=

2
eb
p
=

es
p
,
ea
x
=

([
eb
p
+
8]

<
<

2)

a
d
d
ea
x
,
0x

8
04

8
5
70

eb
p
,
es
p
,
[e
bp

+
8]

ec
x
=

2
eb
p
=

es
p
,

ea
x
=

([
eb
p
+
8]

<
<

2)
+
0
x
80

48
57

0

su
b
ea
x
,
ec
x

eb
p
,
es
p
,
[e
bp

+
8]

ec
x
=

2
eb
p
=

es
p
,

ea
x
=

([
eb
p
+
8]

<
<

2)
+
0
x
80

48
57

0
−
2

m
o
v
ea
x
,
[e
a
x
]

eb
p
,
es
p
,
[e
bp

+
8]
,

ec
x
=

2
eb
p
=

es
p
,

[[
eb
p
+
8]

<
<

2
+
0
x
80

48
57

0
−
ec
x
]

ea
x
=

[(
[e
bp

+
8]

<
<

2)
+
0
x
80

48
57

0
−
2]

jm
p
ea
x

T
ab
le
3:

T
ri
v
ia
l
ex
am

p
le
of

a
sy
m
b
ol
ic
ev
al
u
at
io
n

23

In the example 3, ecx introduced at line 3 receives the speci�c value 42. Then it is reduced
by 40 and the concrete value is updated, and �nally introduced in the formula for eax. Concrete
values can be assimilated to value propagation from compiler [11]. Hence the concrete value will be
replaced by its value in the formula, making it smaller and speeding up the resolution by the SMT
solver.

When using symbolic evaluation on a program, a choice must be made on which element should
be kept concrete or symbolic. In the example from 3, a reasonable strategy could have chosen to
make esp and ebp concrete thus �xing their values. On each formula, a strategy must be constructed
to decide what is concrete and what is symbolic. This question is still an active topic of research
and a major topic in the PhD thesis of Robin David. I can just give the guesses we had with him.

• Obviously do not use a concrete value for your goal, eax in the previous example (table 3)

• It seems that using concrete values for addresses in load/store helps the solver to not returning
stupid values, i.e.: returning 0x0000 for a jump

• In the example of �gure 4d, using a concrete value for ebp and esp speed up the solver

Taking back the example of �gure 4d, symbolic evaluation is able to retrieve the 4 missing targets
as shown by �gure 4e. I will not present the true symbolic value that allowed us to retrieve those
values for register eax as it is quite huge (more than 700 lines).

Implementation In reverse-engineering, SE is usually used in conjunction of a dynamic analysis.
The latter is run multiple times for each input values the SMT solver found, and the CFG is
reconstructed from those multiple executions containing a feasible path. CoDisAsm will only use
the capacity of the symbolic evaluator included in BINSEC platform.

The communication between CoDisAsm and BINSEC platform use a socket channel where the
format of the message is de�ned using protobuf 1.

Once the static disassembler is done, it checks if there is indirect branch in the recovered CFG.
For each one, it sends a request to the symbolic evaluator which sends back a set of possible values
for the register in the indirect branch. For each of this possible values, CoDisAsm restarts the static
disassembly by considering the value as an address of a successor of the indirect branch. A SMT
solver used by the symbolic evaluator computes an over-approximation of the possible values. This
potentially leads to wrong control �ow path.

The symbolic evaluator then needs a trace. But to increase the accuracy of the solver, CoDisAsm
must provide the maximum information of the state of the machine for each executed instruction.
This includes the explicit and implicit impacts of an instruction (see section 3.3 or 5.1). This extra
information helps the evaluator and the solver to reduce the formula or the frame of possible values.
It also helps to �nd the best strategy to determine what element is concrete or symbolic.

Also the trace needed by this evaluator is a bit di�erent. It corresponds to the sequence of
instructions from the root node to the indirect jump and following an unique execution path. For
node discovered by TraceSurfer CoDisAsm adds the extra information about the state of register-
s/memory cells, and for node statically discovered it do not add any extra information.

This extension of CoDisAsm has 2 major drawbacks:

1Protocol Bu�ers, Google's data interchange format � https://github.com/google/protobuf/

24

• Performance are very poor ; due to the size of the execution trace and the resolution time by
the SMT solver

• This has been tested only in the one case illustrated by �gure 4e, and they are a lot to do left
for future work

Discussion The presented extension uses some concept that need to be more develop. Only one
small test has been made which after long hours of tweaking we managed to pass. This brought us
to the need to de�ne a strategy on what concretize and symbolize. This has to be formalize to be
useful for generic analyses.

Also, some position needs to be clarify in the future. For example if an indirect jump is in a
loop or after a loop, should CoDisAsm incorporates all iterations of the loop (if available), or only
one and which one. If a possible value discovered by the solver creates a back edge in the CFG,
suggesting a loop, should CoDisAsm request for new targets with the added edge in the path. At the
present time, we arbitrary decided to only send the last iteration of the loop. Similarly for function
call, if the indirect jump is in a function called several times, should CoDisAsm interrogates the
solver the same amount of time with the di�erent call paths.

Those remaining question I asked are still open and will certainly be developed in Robin David's
thesis.

5.3.2 Overlapping instructions and layers

The section 4.2 presented the overlapping instruction as an obfuscation. Thierry [3] suggested that
this obfuscation can be used to identify malwares. As an extension to CoDisAsm I implemented the
formalization he proposed which can then be used by the malware detector to identify the malicious
code.

To formalize this obfuscation, he places instructions into layers. The property of a layer is that
it does not contain overlapping instructions. When two instructions overlap, the second (ordered
by the control �ow) is placed in an upper layer. Table 4 presents what a recursive traversal is able
to build.

Addresses 0x401027 0x401028 0x401029 0x40102a 0x40102b 0x40102c 0x40102d

Bytes eb � c3 83 c3 42 c3

Layer 1 jmp +1 add ebx,0x42 ret

Layer 2 inc ebx

Table 4: Layers of overlapping instructions from a recursive traversal disassembler

From this formalization some metrics identifying malwares can be extracted:

• The number of layers � indicating the complexity

• The number of addresses used by overlapping instructions � indicating the complexity

• The number of edges in the CFG crossing layers � indicating the frequency of usage of this
obfuscation technique

25

Unfortunately I could evaluate those metrics on a real corpus of malwares du to the lack of time.
Also, this must be added to the morphological analysis tool what has not be done from that time.
Both of them are left for future work.

Implementation The algorithm 5.2 presents the implementation of the coherent cutting from
Thierry[3] and presented in the previous example in table 4.

At �rst every instructions are part of the �rst layer. Then they are iteratively moved from layer
n to layer n+ 1 when overlapping an instruction of the layer n. Thus making a new layer which is
then checked for overlapping instruction and so one.

Algorithm 5.2: Layers creation

Input : The CFG recovered from the previous algorithm
Output: The instructions arranged in the set of layers L
function explore(CFG)

// First, all instruction are in the �rst layer
currentLayer ← ∅
foreach instruction I ∈ CFG do
currentLayer ← I

L← {currentLayer}
// Then we iterate over each new layer to put overlapping instructions into an upper layer
// Note: instructions are ordered by control �ow
layerCreated← True
while layerCreated do
layerCreated← False
nextLayer ← ∅
foreach instruction I ∈ currentLayer do

if I overlaps an other instruction in currentLayer then
nextLayer ← nextLayer ∪ I
currentLayer ← currentLayer \ I
layerCreated← True

L← L ∪ {nextLayer}
currentLayer ← nextLayer

end function

Statistic At that time the only conclusion we can have is that on a corpus of 500 malwares, 70%
of the sample use at least one instruction overlapping as depicted by �gure 12

6 Evaluation

Building a disassembler is not trivial as Paleari et al [12] pointed out every x86 disassemblers are
incorrect due to the complexity of the instruction set. However I will try in this section to validate
the presented approach implemented in the previous section.

26

Figure 12: Number of layers extracted from 500 malwares

For the sake of simplicity I will drop the extensions and focus only on the main parts of the
project (i) the disassembler (ii) the tracer (iii) their combination. And also because the two presented
extensions (layers, BINSEC) are designed for future purposes.

6.1 Evaluation of the tracer

The tracer has been evaluated in every possible angle in the three thesis from Reynaud, Calvet and
Thierry. Nonetheless we need to evaluate the improvements presented in previous section.

The goal of the tracer is to unpack the malicious code in many non-self-modifying code waves.
To do so, it must be transparent enough to allow the execution �ow to reach the payload hidden in
waves. In order to detect the payload execution, we have to know what would be the result of the
execution of the non-packed payload ; we have to know the initial program.

Nanda et al. [27] used the well-known notepad.exe to evaluate their unpacker. But we pre-
ferred to choose a smaller one without any graphical interface but with a print to the standard
output in order to manually validate if the payload has been actually executed. Our choice went to
hostname.exe which print the name of the machine to the standard output.

Thus, hostname.exe is packed with the corpus of packers available in our library and then traced.
The metrics are :

• Execution of the payload

• Execution is complete

• Number of waves

• Execution time

The two �rst elements of metric indicate if the tracer was transparent enough and so if the
payload has been actually executed. And the number of waves is part of the needed information
representing the complexity of the packer.

Unfortunately we were not able to compare our tracer to some others. For example Renovo[13]
is not maintained and is compilable with only a very old version of GNU/gcc. Polyunpack[28],

27

Omniunpack[29] are closed source. It appears that security analyst prefer build their own tools
when a new threat come resulting in a lack of o�-the-shelf softwares.

payload executed tracer crashed #wave tracing time

ACProtect v2.0 Yes No 635 1h50min

Armadillo v9.64 Yes No 165 12h30min

Aspack v2.12 Yes No 3 5s

BoxedApp v3.2 Yes No 6 19min

EP Protector v0.3 Yes No 2 3s

Expressor Yes No 2 10s

FSG v2.0 Yes No 2 2s

JD Pack v2.0 Yes No 3 2min 16s

MoleBox Yes No 3 1min

Mystic Yes No 4 34s

Neolite v2.0 Yes No 2 10s

nPack v1.1.300 Yes No 2 3s

Packman v1.0 Yes No 2 3s

PE Compact v2.20 Yes No 4 3s

PE Lock Yes No 15 24s

PE Spin v1.1 Yes Yes, wave 46 80 40s

Petite v2.2 Yes No 3 3s

RLPack Yes No 2 4s

Setisoft v2.7.1 No Yes, wave 32 32 -

TELock v0.99 Yes No 18 7s

Themida v2.0.3.0 Yes Yes, wave 14 & 80 106 still waiting

Upack v0.39 Yes No 3 4s

Upx v2.90 Yes No 2 2s

VM Protect v1.50 Yes No 1 3s

WinUPack Yes No 3 4s

Yoda's Crypter v1.3 Yes No 4 3s

Yoda's Protector v1.02 Yes No 6 6s

Table 5: Tracer evaluation

Results Except for Setisoft we have seen the payload execution in every packers, so code of
hostname.exe will be present in the extracted waves.

The execution of the old tracer version is not present in the study from Thierry[3], and it would
take too much time to do it again. As I was told by the CARTE engineer who mastered the tracer,
the tracing time seriously decreases from the old version to the new one. As an example it took
several days to unpack the most complex one Armadillo and Themida, and now it takes only some
hours. For the simpler one, it goes from minutes to seconds.

28

6.2 Evaluation of the disassembler

To our understanding the best way to evaluate a disassembler is to compare its result with the
result from a compiler. However when the disassembler is supposed to deal with malicious soft-
wares, it is not possible to compare the disassembly with the assembly or the CFG from the
compiler, as the original code of the malware is not available. Nonetheless �rst test need to
validate that the disassembler is sound. In order to achieve this task I will use a bunch of
the benchmark suite, well-known in WCET research topic, from the Mälardalen WCET bench-
mark programs[30]. We choose this one as they provide a great corpus of small programs "col-
lected from several di�erent research groups and tools vendors around the world" (quoted from
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html).

In addition we are not only interesting on the comparison of the assembly/disassembly, we also
want to check the CFG we are building as this will be the base of the signature for the morphological
analysis.

As a compiler I choose GNU/gcc1 because it is the most used, it is open-source and well docu-
mented. Also it implements dumping features to retrieve the assembly and the CFG.

The available option to dump a CFG is -fdump-tree-cfg. The resulted CFG is a text �le containing
the C code annotated with information about how to connect the labelized basic-blocks. This is not
very useful because this option is run at a high level of abstraction during the compiler work ; there
is a presence of code in C language. The resulting CFG can be very di�erent to the one extracted
at a lower level due to some optimizations from the compiler when assembling the code.

In order to retrieve the most low level intermediate representation from GNU/gcc I used the
option -fdump-rtl-d�nish 2. Thus GNU/gcc exports the CFG after the representation of the initial
program in Register Transfer Language (RTL)3 in which the instructions are written nearly one by
one with some information on the resulting assembly instruction. Also it contains all the information
of the control �ow. At this point in the compiler we are at the lowest possible level because the
choice of register to use for each instructions have been terminated, and the remaining part will just
be pretty printing the RTL to assembly code.

However we prefer to have a graphical representation of this CFG. So I made a small script in
order to compile the RTL dump to graphviz friendly format. This allow us to use the morphological
analysis detailed by Thierry[3].

To illustrate this process of comparison, �gure 13 presents a very small example where the C
code is in listing 13a, the assembly in 13b and the disassembly in 13d. Also �gure 13c shows what
GNU/gcc dumped, and �gure 13e what CoDisAsm trivially recovered.

As you can note, we do not have the same level of information in nodes between the two CFG.
However this is not a big issue for our approach as we are interesting in the morphology of the
graph.

Results Table 6 shows the results of the comparison between the output of GNU/gcc and CoDis-
Asm. First two columns compare the number of assembly instruction respectively generated by
them.

1https://gcc.gnu.org/
2introduced in gcc-4.4.7, the documentation says it always produce an empty �le, however we tested with gcc-4.8.4

and later, and it perfectly works
3https://gcc.gnu.org/onlinedocs/gccint/RTL.html

29

https://gcc.gnu.org/

1 void main(int a) {
2 int b;
3 if(a == 0)
4 b = 1
5 else
6 b = 2;
7 }

(a) Small example in C

1 push ebp
2 mov ebp, esp
3 sub esp, 16
4 cmp [ebp+8], 0
5 jne .L2
6 mov [ebp-4], 1
7 jmp .L1
8 .L2:mov [ebp-4], 2
9 .L1:leave
10 ret

(b) Assembly generated by GNU/gcc from
13a

(c) CFG generated by GNU/gcc from 13a

1 0x401000: 55 push ebp
2 0x401001: 89 e5 mov ebp, esp
3 0x401003: 83 ec 10 sub esp, 0x10
4 0x401006: 83 7d 08 00 cmp [ebp+0x8], 0x0
5 0x40100a: 75 09 jnz 0xb
6 0x40100c: c7 45 fc 01 00 00 00 mov [ebp-0x4], 0x1
7 0x401013: eb 07 jmp 0x9
8 0x401015: c7 45 fc 02 00 00 00 mov [ebp-0x4], 0x2
9 0x40101c: c9 leave
10 0x40101d: c3 ret

(d) Assembly extracted by CoDisAsm corresponding to 13a

(e) CFG recovered by CoDisAsm corresponding to 13a

Figure 13: Di�erences between GNU/gcc and CoDisAsm

30

#instr gcc #instr cod #di� CFG similarity cod time IDA time

adpcm.exe 1191 1191 14 100% 50ms 2.6s

compress.exe 506 506 26 100% 27ms 2.8s

ns.exe 99 99 7 100% 4ms 2.4s

nsichneu.exe 5550 5550 374 100% 1.6s 3s

statemate.exe 1375 1375 186 88% 150ms 2.8s

#instr gcc : number of assembly instruction generated by GNU/gcc
#instr cod : number of assembly instruction extracted by CoDisAsm
#di� : number of di�erent instruction between GNU/gcc and CoDisAsm
CFG similarity : percentage of similarity returned by the morphological analysis
cod time : disassembling time for CoDisAsm
IDA time : disassembling time for IDA pro

Table 6: Disassembler evaluation

The third column compares those instructions line by line and presents the number of mismatch.
About this number, by looking closer we found only three interchanges: sal is used by gcc and shl is
used by CoDisAsm, respectively for jg and jnle, jne and jz. When looking in the documentation,
I found that those couple are actually aliases and are semantically equivalent. Thus depending on
the decoder used you may have interchangeably both of us. So there is no semantical di�erences in
assembly listings.

The fourth column presents the percentage of similarity between the two CFG returned by the
morphological analysis tool describes by Bonfante et al. [8]. The 88% for statemate.exe comes from
instructions featuring �oating point unit. It seems that the assembler �naly generated by GNU/gcc
is di�erent than the level of abstraction at which I extracted the CFG, because they depend on
the capacity of the target processor to deal with �oating point arithmetic. Our disassembler well
retrieve the �nal CFG, but the one extracted from the compiler is not enough low-level.

Finally the �fth column shows the time needed by the disassembler. Those test have been run
on a laptop with a Intel(R) Core(TM) i5-3337U CPU @ 1.80GHz with 4Gb of RAM and running
Debian testing. And it is worth noticing that the implementation from section 5.2 is far much
e�cient than IDA pro in the last column.

Those results show we have now a sound and e�cient disassembler.

6.3 Evaluation the whole method

At this point we know if our disassembler is e�cient, and we know if our tracer is also e�cient. Thus
we want to know if the combination of this 2 projects is e�cient and usable as part of a malware
detector. Also we need to clarify the usefulness of the trace.

To achieve this goal we will reuse the hostname.exe from the second evaluation step. By focusing
on packers that really executed the payload and checking in which waves the original CFG is found.
Thus it will validate if that the CFG of the malicious code could be recovered when dealing with
malwares.

Also to validate the usefulness of the trace, we will try to disassemble the packed program
without a trace and check if the payload is present. In case it is positive, the use of a trace would

31

be useless.

tot T #instr tot D #instr wave - payload time

hostname.exe 154 201 1 - 100% 4 ms

Aspack v2.12 1631 1030 3 - 100% 48ms

EP Protector v0.3 186 201 2 - 100% 5ms

Expressor 1217 487 2 - 100% 7ms

FSG v2.0 240 201 2 - 100% 6ms

JD Pack v2.0 7313 3468 3 - 100% 1.275s

MoleBox 9455 16230 2 - 2% 6.677s
3 - 97%

Mystic 3189 1910 4 - 100% 232ms

Neolite v2.0 1386 895 2 - 100% 72ms

nPack v1.1.300 818 474 2 - 100% 17ms

Packman v1.0 1337 533 2 - 100% 49ms

PE Compact v2.20 1139 223 4 - 100% 19ms

PE Lock 10968 5770 14 - 38% 117ms

PE Spin v1.1 14410 8255 ??? 309ms

Petite v2.2 1591 4694 3 - 68% 124ms

RLPack 464 341 2 - 100% 11ms

TELock v0.99 2274 1681 18 - 70% 56ms

Upack v0.39 494 303 3 - 100% 14ms

Upx v2.90 322 202 2 - 100% 8ms

VM Protect v1.50 264 859 1 - 60% 19ms

WinUPack 455 291 2 - 7% 11ms
3 - 99%

Yoda's Crypter v1.3 1038 1270 4 - 48% 44ms

Yoda's Protector v1.02 2482 2670 6 - 100% 22ms

tot T #instr: number of instructions found in di�erent trace �les
tot D #instr: number of instructions statically disassemble in every waves
wave - payload: the percentage of the payload found per wave, if not de�ne it means 0% for the
wave.
time: time to disassemble every waves

Table 7: Tracer evaluation

Results At �rst, the packed binary is statically disassembled. However the original CFG of
hostname.exe was never present and the resulting CFG stops as the wave switching as expected.

Then the table 7 shows the disassembling details when using a trace in conjunction of CoDisAsm.
The �rst column shows the accumulated number of instructions found in trace from each waves and
is opposed to the number of instructions statically disassembled. The third column shows the wave
that contain the payload and the percentage of it.

32

Finally, the time needed to recover the CFG of each waves.
There is some waves where we are not able to retrieve 100% of the payload. For example for

the Petite v2.2 packer, we only found 68% of similarity between the CFG of hostname.exe and the
one extracted from the third wave. By looking closer on the graphs, it appears that the third wave
start with a call instruction. As said in section 4.2 CoDisAsm make the assumption that the call
will return to the next linearly found instruction. However in this case, it will never happen and it
will actually disassemble some useless code. So the generated CFG will contain a lot of node that
can not be matched with the graph of hostname.exe.

7 Related work

Malwares are an increasingly important threat for our computer and there is no ultimate solution
to cure it. They are distributed as a binary �le. In order to study old malwares or to build some
tools to detect future one, a disassembler is required to recover the maximum information on the
malicious code. However a simple disassembler like the well-known and widely used IDA pro is not
enough because malwares authors use of their imagination to obfuscate their original code. Most
of the time they use a packer which add several protection level depending on the complexity of
the packer; those one warp the original code with several self-modifying level. Bayer et al. [31]
proposed a short overview of the technique used by packers in 2008. Much more recently (May
2015) Ugarte-Pedrero et al. [32] studied the complexity of a corpus of packers to classify them.

The reference software in reverse-engineering is a commercial tool called IDA Pro 1. It uses the
recursive traversal method to disassemble in conjunction with a lot of complex heuristics in order
to identify some elements in the assembly ; i.e.: function identi�cation, indirect branch.

First disassembler is provided by the GNU binary utility library GNU/objdump. It uses the
linear sweep technique to retrieve assembly code. Even if this tool is powerful when using by linker
time optimizer [33], it has the major drawback to see each byte of the binary as part of an opcode,
mixing potential code and data.

First improvement was to use static analysis and recursive traversal to recover the assembly
and the CFG. Cifuentes et al [34], Kinder and Veith [35, 36] with Jackstab, both use data-�ow
analysis already mastered in compilation [11]. Even if Jackstab is able to deal with certain form of
obfuscation, it can not handle self-modifying code.
Then with more accuracy and also more complexity, Reps et al. [37, 38, 39] with CodeSurfer created
the Value Set Analysis algorithm based on abstract interpretation, also mastered in compilation
[40]. Their method has been reused by Laporte et al. [41] to verify self-modifying property on
software. They compute an over-approximation of the values present in registers and memory cells
at each point of the program, resolving the problem of indirect jump[42]. However as every over-
approximation techniques results can contain a lot of false-positive (wrong target for indirect jump).
Thus Kinder et al. studied the possibility of alternating under-/over-approximation in [43].
And more recently Bardin et al. [44] combine advantages of data �ow analysis and control �ow
reconstruction using k-set possibility for indirect branch.
Opposed to abstract interpretation, symbolic evaluation [45] uses a similar approach of the problem,
but implemented in a fully di�erent way. Instead of reporting the impact of instruction on an
abstract machine, they create a formula describing the symbolic value of an element, then feed a SMT
solver to compute the over-approximation. Bardin et al. [25, 46, 26] with OSMOSE use symbolic

1https://www.hex-rays.com/products/ida/

33

evaluation in conjunction of dynamic analysis to recover the CFG of a binary �le. Nonetheless their
primary goal is to build the set of possible input arguments in order to instrument all possible paths
of a CFG. This method has been applied by Yadegari et al. [47] which are successful to deal with
Return-Oriented Programing a complex obfuscation technique.

However static analyses create always an over-approximation which is often too imprecise and
report a lot of false positives. That is why this document takes a more pragmatic path by combining
dynamic and static analysis. Also none of them are able to retrieve the payload in a packed malware
due to the self-modifying part. Some disassemblers use dynamic analysis such as BIRD from Nanda
et al. [27] but it is still not design to deal with obfuscated code. The closer work to our is BAP
from Brumley et al. [48] which use an hybrid method : the conjunction of an execution trace and
the static analysis to recover the CFG. However this platform is not able to work with program
containing system call.

The second utility software in the box of security analyst is an unpacker. This problem has been
widely studied as new unpackers come with new discovered packing methods. And solutions are
very di�erent, however all of them aim to unpack without recovering a CFG.

Some unpackers are based on statistics or heuristics. PolyUnpack[28] compares the code in
memory with the binary �le to determine if it is self-modifying. Omniunpack[29] monitors memory
pages and launch the anti-virus when a write is done on a write-abord page. Eureka[49] uses
heuristics to decide when the code is unpacked based on system call usage. But most unpackers
are based on dynamic analysis and execute the code. Renovo[13] and Cesare et al.[50] use an
emulated environment based on QEMU/TEMU. Like Ehter[17], we prefer to use a virtual machine
as it is easier to let the OS handling its own system calls. Coogan[51] tried to tackle the unpacking
problem by using static analysis. They tried to identify unpacking routine from the original code
using control �ow and alias analysis. There exists an open-source framework called Titan Engine[52]
to unpack code using dynamic analysis, however this is just a framework and would require more
attention to test it.

To formalize self-modifying behavior, Debray et al. [53] �rst modeled this concept as phases.
Then Guizani et al. [22] rede�ned it as waves where the sequence of waves is monotonic, and no
possible back transition to previous wave.

8 Conclusion

This document �rst introduced a brief history of existing malwares before the context and complexity
of analyzing this kind of softwares. It also contextualized the frame of the study by an overview of the
chosen architecture particularly used by malwares: x86 processors and Microsoft Operating System..
Then the theoretical part presented the chosen way to disassemble and unpack malwares. This was
followed by the presentation of common di�culties met when disassembling a normal program then
when disassembling obfuscated one. Also, by answering to those pitfalls, a justi�cation on the
chosen disassembling/unpacking techniques has been expressed.

The full context of this master thesis exposed, the implementation realized during the internship
is detailed and evaluated. The interpretation of the given results in section 6 are very encouraging.
The built disassembler is far much e�cient than the commercial reference IDA pro. Also, comparing
the result with a compiler brought the implemented disassembler as closer as possible to the original
code.

A last word on the evaluation, it would have been preferable to also compare the disassembly of

34

a malware. But the problem is in the lack of reference for malicious software to compare it with,
indeed malwares are not distributed with their source code.

Nonetheless, the objectives presented in the introduction are reached. The disassembler coupled
with the tracer is sound and e�cient. Also its scalability has been showed by the implementation
of extensions to improve accuracy of the disassembly and the malware detection.

However, there is still future work left, especially with extensions. Indeed, the more important
one co-developed with BINSEC team member is still in early alpha and require a lot more work to
be e�cient. Also, the de�nition of a good strategy for the concretization/symbolization is needed
and the way to build it in order to optimize the resolution of the formula which often returns the
entire address space (232 possibilities) as a result, which is unusable in practice. In addition, the
improvement I suggested on the execution trace is incompatible with the BINSEC project. We had
to revert to the previous version to gain information and improving the veracity of the solver in
contrast of the loss of performance. In conclusion, the symbolic evaluation technique can be used
for a malware analyst but not for a real time malware detector.

The unpacker can also be improved. A very recent study [32] on the complexity of packers
revealed the possibility for malicious code to be split in several frames (their concept of frames is
close to our waves). Thus fooling our assumption on the presence of the full code in a wave.

On the disassembler I was told to leave some future works and experiments. To improve the
coverage of disassembled code, it would be useful to simulate movements on the stack and handling
speci�c registers for interruptions. And I believe that implementing some abstract interpretation
oriented feature to compare it with symbolic evaluation would be relevant. Also a generic disas-
sembler must be open to other architecture such as ARM to detect and analyze malwares build for
smartphones.

Acknowledgements

Thanks to Jean-Yves Marion for accepted me in internship, for all his useful advices and the time
he consecrated on my supervision ; to Guillaume Bonfante and Fabrice Sabatier for their help and
pertinent remarks ; to Hubert Godfroy my fellow workmate.

References

[1] D. Reynaud, Analyse de codes auto-modi�ants pour la sécurité logicielle. PhD thesis, UThèse
de Doctorat d'Université, Institut National Polytechnique de Lorraine, 2010.

[2] J. Calvet, Analyse dynamique de logiciels malveillants. PhD thesis, Université de Lorraine,
2013.

[3] A. Thierry, Désassemblage et détection de logiciels malveillants auto-modi�ants. PhD thesis,
UThèse de Doctorat d'Université, Université de Lorraine, 2015.

[4] A. Thabet, �Stuxnet malware analysis paper,� Freelancer Malware Researcher, pp. 3�28, 2010.

[5] P. Szor, �The art of computer virus defense and research,� 2005.

[6] A. Swinnen and A. Meshbahi, �One packer to rule them all: Empirical identi�cation, comparison
and circumvention of current antivirus detection techniques.,�

35

[7] M. Kaczmarek, Des fondements de la virologie informatique vers une immunologie formelle�.
PhD thesis, Thèse de Doctorat d'Université, Institut National Polytechnique de Lorraine, 2008.

[8] G. Bonfante, M. Kaczmarek, and J.-Y. Marion, �Architecture of a morphological malware
detector,� Journal in Computer Virology, vol. 5, no. 3, pp. 263�270, 2009.

[9] C. Timsit, �Du transistor à l'ordinateur,� 2010.

[10] Intel, Intel R© 64 and IA-32 Architectures Software Developer Manuals. https:
//www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-manual-325462.pdf.

[11] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and
Tools (2Nd Edition). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2006.

[12] R. Paleari, L. Martignoni, G. Fresi Roglia, and D. Bruschi, �N-version disassembly: di�erential
testing of x86 disassemblers,� in Proceedings of the 19th international symposium on Software
testing and analysis, pp. 265�274, ACM, 2010.

[13] M. G. Kang, P. Poosankam, and H. Yin, �Renovo: A hidden code extractor for packed exe-
cutables,� in Proceedings of the 2007 ACM workshop on Recurring malcode, pp. 46�53, ACM,
2007.

[14] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood, �Pin: building customized program analysis tools with dynamic instrumenta-
tion,� ACM Sigplan Notices, vol. 40, no. 6, pp. 190�200, 2005.

[15] P. Beaucamps, I. Gnaedig, and J.-Y. Marion, �Behavior abstraction in malware analysis,� in
Runtime Veri�cation, pp. 168�182, Springer, 2010.

[16] A. Moser, C. Kruegel, and E. Kirda, �Exploring multiple execution paths for malware analysis,�
in Security and Privacy, 2007. SP'07. IEEE Symposium on, pp. 231�245, IEEE, 2007.

[17] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, �Ether: malware analysis via hardware
virtualization extensions,� in Proceedings of the 15th ACM conference on Computer and
communications security, pp. 51�62, ACM, 2008.

[18] R. Wartell, Y. Zhou, K. W. Hamlen, M. Kantarcioglu, and B. Thuraisingham, �Di�erentiating
code from data in x86 binaries,� in Machine Learning and Knowledge Discovery in Databases,
pp. 522�536, Springer, 2011.

[19] C. Collberg, C. Thomborson, and D. Low, �Manufacturing cheap, resilient, and stealthy opaque
constructs,� in Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pp. 184�196, ACM, 1998.

[20] C. Jamthagen, P. Lantz, and M. Hell, �A new instruction overlapping technique for anti-
disassembly and obfuscation of x86 binaries,� in Anti-malware Testing Research (WATeR),
2013 Workshop on, pp. 1�9, IEEE, 2013.

[21] G. Bonfante, J. Fernandez, J.-Y. Marion, B. Rouxel, F. Sabatier, and A. Thierry, �Codisasm
:a disassembly of self-modifying binaries with overlapping instructions.�.

36

https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf

[22] W. Guizani, J.-Y. Marion, and D. Reynaud-Plantey, �Server-side dynamic code analysis,� in
Malicious and unwanted software (MALWARE), 2009 4th international conference on, pp. 55�
62, IEEE, 2009.

[23] L. Martignoni, R. Paleari, G. F. Roglia, and D. Bruschi, �Testing cpu emulators,� in Proceedings
of the eighteenth international symposium on Software testing and analysis, pp. 261�272, ACM,
2009.

[24] P. Ferrie, �Anti-unpacker tricks,� Proc. of the 2nd International CARO Workshop, 2008.

[25] S. Bardin and P. Herrmann, �Osmose: automatic structural testing of executables,� Software
Testing, Veri�cation and Reliability, vol. 21, no. 1, pp. 29�54, 2011.

[26] S. Bardin, N. Kosmatov, and F. Cheynier, �E�cient leveraging of symbolic execution to ad-
vanced coverage criteria,� in Software Testing, Veri�cation and Validation (ICST), 2014 IEEE
Seventh International Conference on, pp. 173�182, IEEE, 2014.

[27] S. Nanda, W. Li, L.-C. Lam, and T.-c. Chiueh, �Bird: Binary interpretation using runtime disas-
sembly,� in Proceedings of the International Symposium on Code Generation and Optimization,
pp. 358�370, IEEE Computer Society, 2006.

[28] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee, �Polyunpack: Automating the
hidden-code extraction of unpack-executing malware,� in Computer Security Applications
Conference, 2006. ACSAC'06. 22nd Annual, pp. 289�300, IEEE, 2006.

[29] L. Martignoni, M. Christodorescu, and S. Jha, �Omniunpack: Fast, generic, and safe unpacking
of malware,� in Computer Security Applications Conference, 2007. ACSAC 2007. Twenty-Third
Annual, pp. 431�441, IEEE, 2007.

[30] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, �The Mälardalen WCET benchmarks �
past, present and future,� (Brussels, Belgium), pp. 137�147, OCG, July 2010.

[31] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel, �A view on current malware
behaviors,� in USENIX workshop on large-scale exploits and emergent threats (LEET), 2009.

[32] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas, �Sok: Deep packer inspection:
A longitudinal study of the complexity of run-time packers,� 2015.

[33] B. De Sutter, B. De Bus, and K. De Bosschere, �Link-time binary rewriting techniques for pro-
gram compaction,� ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 27, no. 5, pp. 882�945, 2005.

[34] C. Cifuentes, D. Simon, and A. Fraboulet, �Assembly to high-level language translation,� in
Software Maintenance, 1998. Proceedings., International Conference on, pp. 228�237, IEEE,
1998.

[35] J. Kinder and H. Veith, �Jakstab: A static analysis platform for binaries,� in Computer Aided
Veri�cation, pp. 423�427, Springer, 2008.

[36] J. Kinder, �Static analysis of x86 executables,� 2010.

37

[37] G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum, �Codesurfer/x86 - a platform for
analyzing x86 executables,� in Compiler Construction, pp. 250�254, Springer, 2005.

[38] G. Balakrishnan and T. Reps, �Wysinwyx: What you see is not what you execute,� ACM
Transactions on Programming Languages and Systems (TOPLAS), vol. 32, no. 6, p. 23, 2010.

[39] G. Balakrishnan and T. Reps, �Analyzing memory accesses in x86 executables,� in Compiler
Construction, pp. 5�23, Springer, 2004.

[40] P. Cousot and R. Cousot, �Abstract interpretation: a uni�ed lattice model for static analysis
of programs by construction or approximation of �xpoints,� in Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, pp. 238�252, ACM,
1977.

[41] S. Blazy, V. Laporte, and D. Pichardie, �Veri�ed abstract interpretation techniques for disas-
sembling low-level self-modifying code,� Proc. of the 5th conference on Interactive Theorem
Proving (ITP), 2014.

[42] C. Linn and S. Debray, �Obfuscation of executable code to improve resistance to static disassem-
bly,� in Proceedings of the 10th ACM conference on Computer and communications security,
pp. 290�299, ACM, 2003.

[43] J. Kinder and D. Kravchenko, �Alternating control �ow reconstruction,� in Veri�cation, Model
Checking, and Abstract Interpretation, pp. 267�282, Springer, 2012.

[44] S. Bardin, P. Herrmann, and F. Védrine, �Re�nement-based cfg reconstruction from unstruc-
tured programs,� in Veri�cation, Model Checking, and Abstract Interpretation, pp. 54�69,
Springer, 2011.

[45] J. C. King, �Symbolic execution and program testing,� Communications of the ACM, vol. 19,
no. 7, pp. 385�394, 1976.

[46] S. Bardin, P. Herrmann, J. Leroux, O. Ly, R. Tabary, and A. Vincent, �The bincoa framework
for binary code analysis,� in Computer Aided Veri�cation, pp. 165�170, Springer, 2011.

[47] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray, �A generic approach to automatic
deobfuscation of executable code,� tech. rep., Technical report, Department of Computer Sci-
ence, The University of Arizona, 2014.

[48] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, �Bap: A binary analysis platform,� in
Computer Aided Veri�cation, pp. 463�469, Springer, 2011.

[49] M. Sharif, V. Yegneswaran, H. Saidi, P. Porras, and W. Lee, �Eureka: A framework for enabling
static malware analysis,� in Computer security-ESORICS 2008, pp. 481�500, Springer, 2008.

[50] S. Cesare and Y. Xiang, �Classi�cation of malware using structured control �ow,� in Proceedings
of the Eighth Australasian Symposium on Parallel and Distributed Computing-Volume 107,
pp. 61�70, Australian Computer Society, Inc., 2010.

38

[51] K. Coogan, S. Debray, T. Kaochar, and G. Townsend, �Automatic static unpacking of malware
binaries,� in Reverse Engineering, 2009. WCRE'09. 16th Working Conference on, pp. 167�176,
IEEE, 2009.

[52] M. Vuksan, T. Peri£in, and V. Milunovic, �Fast & furious reverse engineering with titanengine.
black hat usa 2009,� 2009.

[53] S. Debray and J. Patel, �Reverse engineering self-modifying code: Unpacker extraction,� in
Reverse Engineering (WCRE), 2010 17th Working Conference on, pp. 131�140, IEEE, 2010.

39

	Introduction
	Introduction to software and hardware architecture
	Reverse-engineering an executable binary file
	Linear sweep disassembler
	Recursive traversal
	Dynamic reconstruction

	Pitfalls in disassembling
	Common disassembling issues
	Obfuscations
	Self-modifying code

	CoDisAsm: a concatic disassembler
	TraceSurfer
	The disassembler
	Extensions of CoDisAsm
	Interaction with BINSEC Platform
	Overlapping instructions and layers

	Evaluation
	Evaluation of the tracer
	Evaluation of the disassembler
	Evaluation the whole method

	Related work
	Conclusion

