
164

Tightening contention delays while scheduling parallel
applications on multi-core architectures

BENJAMIN ROUXEL, STEVEN DERRIEN, and ISABELLE PUAUT, University of Rennes 1/IRISA

Multi-core systems are increasingly interesting candidates for executing parallel real-time applications, in
avionic, space or automotive industries, as they provide both computing capabilities and power efficiency.
However, ensuring that timing constraints are met on such platforms is challenging, because some hardware
resources are shared between cores.

Assuming worst-case contentions when analyzing the schedulability of applications may result in systems
mistakenly declared unschedulable, although the worst-case level of contentions can never occur in practice.
In this paper, we present two contention-aware scheduling strategies that produce a time-triggered schedule of
the application’s tasks. Based on knowledge of the application’s structure, our scheduling strategies precisely
estimate the effective contentions, in order to minimize the overall makespan of the schedule. An Integer
Linear Programming (ILP) solution of the scheduling problem is presented, as well as a heuristic solution that
generates schedules very close to ones of the ILP (5 % longer on average), with a much lower time complexity.
Our heuristic improves by 19% the overall makespan of the resulting schedules compared to a worst-case
contention baseline.

CCS Concepts: • Computer systems organization → Parallel architectures; Real-time system archi-
tecture; • Software and its engineering → Scheduling; Real-time schedulability; • Hardware → Safety
critical systems;

Additional Key Words and Phrases: Real-time System, Contention-Aware Scheduling

1 INTRODUCTION
The increasing demand for computing power and low energy consumption is placing multi-/many-
core architectures as increasingly interesting candidates for executing embedded critical systems.
It becomes more and more common to find such architectures in automotive, avionic or space
industries [2, 16].

Guaranteeing that timing constraints are met on multi-core platforms is a challenging issue. One
difficulty lies in the estimation of the Worst-Case Execution Time (WCET) of tasks. Due to the
presence of shared hardware resources (buses, shared last level of cache, . . .), techniques designed
for single-core architectures cannot be directly applied to multi-core ones. Since it is hard in general
to guarantee the absence of resource conflicts during execution, current WCET techniques either
produce pessimistic WCET estimates or constrain the execution to enforce the absence of conflicts,
at the price of a significant hardware under-utilization.

This work was partially supported by ARGO (http://www.argo-project.eu/), funded by the European Commission under
Horizon 2020 Research and Innovation Action, Grant Agreement Number 688131.
Authors’ addresses: B. Rouxel <benjamin.rouxel@irisa.fr>, S. Derrien <steven.derrien@irisa.fr>, I. Puaut <is-
abelle.puaut@irisa.fr> University of Rennes 1/IRISA, Campus de Beaulieu, 35000, Rennes, France.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
1539-9087/2017/10-ART164 $15.00
https://doi.org/10.1145/3126496

This article was presented in the International Conference on Embedded Software (EMSOFT) 2017 and appears as part of
the ESWEEK-TECS special issue

https://doi.org/10.1145/3126496

164:2 B. Rouxel, S. Derrien and I. Puaut

A second issue is the selection of a scheduling strategy which will decide where and when
to execute tasks. Scheduling for multi-core platforms was the subject of many research works,
surveyed in [8]. We believe that static mapping of tasks to cores (partitioned scheduling) and
time-triggered scheduling on each core allow to have control on sharing of hardware resources,
and thus allow to better estimate worst-case contention delays.
Some existing work on multi-core scheduling considers that the platform workload consists of

independent tasks. As parallel execution is the most promising solution to improve performance,
we envision that within only a few years from now, real-time workloads will evolve toward parallel
programs. The timing behaviour of such programs is challenging to analyze because they consist
of dependent tasks interacting through complex synchronization/communication mechanisms.
We believe that models offering a high-level view of the behavior of parallel programs allow a
precise estimation of shared resource conflicts. In this paper, we assume parallel applications
modeled as directed acyclic task graphs (DAGs), and show that the knowledge of the application’s
structure allows to have precise estimation of tasks that effectively execute in parallel, and thus
contention delays. These DAGs do not necessarily need to be built from scratch, which would
require an important engineering effort. Automatic extraction of parallelism, for instance from a
high level description of applications in model based design workflows [10], looks to us a much
more promising direction.
In this paper, we present two mapping and scheduling strategies featuring bus contention

awareness. Both strategies apply to multi-core platforms where cores are connected to a round-
robin bus. A safe (but pessimistic) bound for the access latency is to consider NbCores - 1 contending
tasks being granted access to the bus (withNbCores as the number of available cores). Our scheduling
strategies take into consideration the application’s structure and information on the schedule under
construction to estimate precisely the effective degree of interference used to compute the access
latency. The proposed scheduling strategies generate a non preemptive time-triggered partitioned
schedule and select the appropriate level of contention to minimize the schedule length.
The first proposed scheduling method models the task mapping and scheduling problem as

constraints on task assignment, task start times and communications between tasks. We demonstrate
that the optimal schedule can only be found using quadratic equations due to the nature of the
required information to model the communication cost. This modeling is then refined into an
Integer Linear Programming (ILP) formulation that in some cases overestimates communication
costs and thus may not find the shortest schedule. Since the solved scheduling problem is NP-hard,
the ILP formulation is shown to not scale properly when the number of tasks grows. We thus
developed a heuristic scheduling technique that scales much better with the number of tasks and is
able to compute the accurate communication cost. Albeit not always finding the optimal solution,
the ILP formulation is included in this paper, because it gives a non ambiguous description of the
problem under study, and also serves as a baseline to evaluate the quality of the proposed heuristic
technique.

The proposed scheduling techniques are evaluated experimentally. The schedule’s length gener-
ated by our heuristic is compared to its equivalent baseline scheduling technique accounting for the
worst case contention. The experimental evaluation also studies the interest of allowing concurrent
bus accesses as compared to related work where concurrent accesses are systematically avoided in
the generated schedule. Finally, we study the time required by the proposed techniques, as well as
how schedule lengths vary when changing architectural parameters such as the duration of one
slot of the round-robin bus. The experimental evaluation uses a subset of the StreamIT streaming
benchmarks [25] as well as synthetic task graphs using the TGFF graph generator [11].

The contributions of this work are threefold:

This article was presented in the International Conference on Embedded Software (EMSOFT) 2017 and appears as part of
the ESWEEK-TECS special issue

Tightening contention delays while scheduling parallel applications 164:3

(1) First, we propose a novel approach to derive precise bounds on worst-case contention
on a shared round-robin bus. Compared to previous methods, we use knowledge of the
application’s structure (task graph) as well as knowledge of tasks placement and scheduling
to precisely estimate tasks that execute in parallel, and thus tighten the worst bus access
delay.

(2) Second, we present two scheduling methods that calculate a time-triggered partitioned
schedule, using an ILP formulation and a heuristic. The novelty with respect to existing
scheduling techniques lies on the ability of the scheduler to select the best strategy regarding
concurrent accesses to the shared bus (allow of forbid concurrency) to minimize the overall
makespan of the schedule.

(3) Third, we provide experimental data to evaluate the benefit of precise estimation of con-
tentions as compared to the baseline estimation where NbCores - 1 tasks are granted access to
the bus for every memory access. Moreover, we discuss the interest of allowing concurrency
(and thus interference) between tasks as compared to state-of-the-art techniques such as [2]
where contentions are systematically avoided.

The rest of this paper details the proposed techniques and is organized as follows. Section 2
presents related studies. Assumptions on the hardware and software are given in Section 3. Section
4 details the proposed method to calculate precise worst-case degree of interference when accessing
the shared bus. Section 5 then presents the two techniques for schedule generation, using an ILP
formulation and a heuristic. Section 6 presents experimental results. Concluding remarks are given
in Section 7.

2 RELATEDWORK
Tasks scheduling on multi-core platforms consists in deciding where (mapping) and when (sched-
uling) each task is executed. The literature on mapping/scheduling of tasks on multi-cores is
tremendous as there exists plenty of different properties on, e.g. the input task set, the type of
scheduling algorithm. According to the survey from Davis and Burns [8], the three main categories
of scheduling algorithms are global scheduling, semi-partitioned, and partitioned scheduling. Ac-
cording to their terminology, the scheduling methods presented in this paper can be classified as
static, partitioned, time-triggered and non-preemptive.

Shared resources in multi-core systems may be either shared software objects (such as variables)
that have to be used in mutual exclusion or shared hardware resources (such as buses or caches) that
are shared between cores according to some resource arbitration policies (TDMA, round-robin, etc).
These two classes of resources lead to different analyses to ensure that there is neither starvation
nor deadlock. Dealing with shared objects is not new, and there now exists several techniques
adapted from the single-core systems. Most of them are based on priority inheritance. In particular
Jarrett et al. [17] apply priority inheritance to multi-cores and propose a resource management
protocol which bounds the access latency to a shared resource. Negrean et al. [20] provide a method
to compute the blocking time induced by concurrent tasks in order to determine their response
time.

Beyond shared objects, multi-core processors feature hardware resources that may be accessed
concurrently by tasks running on the different cores. Typical hardware resources are the main
memory, the memory bus or shared last-level cache. A contention analysis then has to be defined
to determine the worst case delay for a task to gain access to the resource (see [12] for a survey).
Some shared resources may directly implement timing isolation mechanism between cores, such as
Time Division Multiple Access (TDMA) buses, making contention analysis straightforward.

This article was presented in the International Conference on Embedded Software (EMSOFT) 2017 and appears as part of
the ESWEEK-TECS special issue

164:4 B. Rouxel, S. Derrien and I. Puaut

To avoid resource under-utilization caused by TDMA, other resource sharing strategies such as
round-robin offer a good trade-off between predictability and resource usage. Worst-case bounds
on contention are similar to those of TDMA. However, knowledge about the system may help
tightening estimated contention delays.
Approaches to estimate contention delays for round-robin arbitration differ according to the

nature and amount of information used to estimate contention delays. For architectures with
caches, Dasari et al. [6, 7] only assume task mapping known, whereas Rihani et al. [16] assume
both mapping and execution order on each core known. Schliecker et al. [22] tightly determine
the number of interfering bus requests. In comparison with these works, our technique jointly
calculates task scheduling and contentions with the objective of minimizing the schedule makespan
by letting the technique decide when it is necessary to avoid or to account for interference.

Further refinements of contention costs can be obtained by using specific task models. Pellizzoni
et al. [21] introduced the PRedictable Execution Model (PREM) that splits a task in a read com-
munication phase and an execute phase. This allows accesses to shared hardware resources to be
precisely identified. In our work, we use a model very close to the PREM task model.
The PREM task model, or similar ones, was used in several research works [1, 2]. Alhammad

and Pellizzoni [1] proposed a heuristic to map and schedule a fork/join graph onto a multi-core
in a contention-free manner. They split the graph in sequential or parallel segments, and then
schedule each segment. In contrast to us, they consider only code and local data access in contention
estimation, leaving the global shared variable in the main external memory with worst concurrency
assumed when accessing them. Moreover, we deal with any DAG not just fork/join graphs, and write
back modified data to memory only when required. Becker et al. [2] proposed an ILP formulation
and a heuristic aiming at scheduling periodic independent PREM-based tasks on one cluster of a
Kalray MPPA processor. They systematically create a contention-free schedule. Our work differs in
the considered task model as well as the goal to reach. They consider sporadic independent tasks to
which they aim at finding a valid schedule that meets each tasks’ deadline. In contrast, we consider
one iteration of a task graph and we aim at finding the shortest schedule. In addition, our resulting
schedule might include overlapping communications due to scheduler decision, while [1, 2] only
allow synchronized communication.

Giannopoulou et al proposed in [13] a combined analysis of computing, memory and communi-
cation scheduling in a mixed-criticality setting, for cluster-based architectures such as the Kalray
MPPA. Similarly to our work, the authors aim, among others, at precisely estimating contention
delays, in particular by identifying tasks that may run in parallel under the FTTS schedule, that
uses synchronization barriers. However, to our best knowledge they do not take benefit of the
application structure, in particular dependencies between tasks to further refine contention delays.

In order to reduce the impact of communication delays on schedules, [4, 14] hide the communi-
cation request while a computation task is running. This accounts with the asynchronism implied
by DMA requests. However they use a worst-case contention which could be refined by our study.
In addition to the initial problem, shared resource interference can be accounted at schedule time
in order to tighten the overall makespan of the resulting schedule.

To quantify memory interference on DRAM-banks, [19, 27] proposed two analyses, request-driven
and job-driven. The former one bounds memory request delays considering memory interference
on the DRAM bank, while the latter adds the worst-case concurrency on the data-bus of the DRAM.
Their work is orthogonal to ours: the request-driven analysis would refine the access time part in
our delay, while our method could refine their job-driven analysis by decreasing the amount of
concurrency they use.

This article was presented in the International Conference on Embedded Software (EMSOFT) 2017 and appears as part of
the ESWEEK-TECS special issue

Tightening contention delays while scheduling parallel applications 164:5

3 SYSTEMMODEL
3.1 Architecture model
We consider a multi-core architecture for which every core is connected to a main external memory
through a bus. Each core either has private access to a ScratchPad memory (SPM) (e.g.: Patmos [23])
or there exists a mechanism for bank privatization (e.g.: Kalray MPPA [9]). Such a private memory
allows, after having first fetched data/code from the main memory, to perform computations
without any access to the shared bus. For each core, data is transferred between the SPM and the
main memory through a shared bus.

Communications are blocking and indivisible. The sender core initiates a memory request, then
waits until the request is fully complete (blocking communications), i.e. the data is transferred
from/to the external memory. There is no attempt to reuse processor time during a communication
by allocating the processor to another task (indivisible communication). Execution on the sending
core is stalled until communication completion1.

In case the sender and the receiver tasks execute on the same core, communications are performed
directly using the SPM and no memory transfer is performed.

The shared bus is arbitrated using a round-robin policy. Access requests are enqueued (one queue
per core) and served in a round-robin fashion. A maximum duration of Tslot is allocated to each
core, to transfer Dslot data words to external memory (a data word needs Tslot/Dslot time units
to be sent). If a core requires more time than Tslot to send all the data, then the data will be split
in chunks to be sent in several intervals of length Tslot (see equation (1a)) plus some additional
remaining time (see equation (1b)). If a full Tslot duration is not needed to send some data, the
arbiter processes the request from the next core in the round. As an example, taking a Dslot of 2
data words and a core requesting a transfer request for data of 5 data words, results in two periods
of duration Tslot and a remaining time of Tslot/Dslot .

In the worst case and for each chunk, a request will be delayed by NbCores − 1 pending requests
from the other cores (with NbCores being the number of available cores), see equation (1c). Overall,
equation (1d) derives the worst latency to transmit some data with a round-robin arbitration policy.

The round-robin arbiter is predictable as the latency of a request can be statically estimated, as
long as the configuration of the arbiter (parameters Tslot and Dslot) and the amount of data to be
transferred (data) are known at design time [18].

#chunks = ⌊data/Dslot ⌋ (1a)
remaininдTime = (data mod Dslot) · (Tslot/Dslot) (1b)

#waitinдSlots = ⌈data/Dslot ⌉ (1c)
delay = Tslot · #waitinдSlots · (NbCores − 1)︸ ︷︷ ︸

Total waiting time

+Tslot · #chunks + remaininдTime︸ ︷︷ ︸
Total access time

(1d)

3.2 Task model
In this work, we consider an application modeled as a directed acyclic task graph (DAG)2, in which
nodes represent computations (tasks) and edges represent communications between tasks. A task
graph G is a pair (V ,E) where the vertices in V represent the tasks of the application. The set of
edges E represents the data dependencies. An edge is present when a task is causally dependent on
an other one, meaning the target of the edge needs the source to be completed prior to run. An
1Non blocking communication using a DMA engine, is left for future work
2This work supports multiple DAGs with same periodicity as it is, however we skipped it for space considerations.

This article was presented in the International Conference on Embedded Software (EMSOFT) 2017 and appears as part of
the ESWEEK-TECS special issue

164:6 B. Rouxel, S. Derrien and I. Puaut

example of simple task graph, extracted from the StreamIT benchmark suite [25], is presented by
Figure 1 and corresponds to a radix-2 of a Fast Fourier Transform.

Fig. 1. Task graph example – radix-2 case of Fast Fournier Transform from the StreamIT benchmark suite [25]

Each task is divided in three phases (or sub-tasks) according to the read-execute-write semantics,
as first defined in PREM [21] and augmented in [1] with awrite phase. The read phase reads/receives
the mandatory code and/or data frommain memory to SPM, such that the execute phase can proceed
without access to the bus. Finally the write phase writes/sends the resulting data back to the main
memory. In the following, read and write will refer to the communication phases of tasks. The
obvious interest of the read-execute-write semantics is to isolate the sub-tasks that use the bus.
Therefore, the contention analysis can focus only on these sub-tasks. For the sake of simplicity,
this study considers that all code and data fits in all types of memory at any point of time. We also
assume the code entirely fits into the SPM, but a simple extension could consider prefetching the
code in the read phase.
A task i is defined by a tuple < τ ri ,τi ,τ

w
i > to represent its read, execute, and write phases. An

edge is defined by a tuple e =< τws ,τ
r
t ,Ds,t > where τws is the write phase of the source task s , τ rt

is the read phase of the target task t . Ds,t is the amount of data exchanged between s and t .
The WCET of the execute phase, noted Ci , can be estimated in isolation from the other tasks

considering a single-core architecture, because there is no access to the main memory (all the
required data and code have been loaded into the SPM before the task’s execution). Conversely, the
communication delay of the read and write phases (respectively noted delayri and delay

w
i) depend

on several factors: amount of data to be transferred, number of potential concurrent accesses
to the bus. Thus there are 2 possibilities to estimate the WCET of the read/write phase: either
taking a pessimistic static bound, agnostic of task placement on cores (equation (1d)), or take into
consideration the knowledge about the applications’ structure (effective concurrency) and about
task mapping and scheduling to obtain a more precise bound, as it will be detailed in Section 4.

4 REFINING COMMUNICATION COSTS
The communication cost for a communication phase depends on how much interference this phase
suffers from. The interference is due to tasks running in parallel on the other cores. The number
of such tasks depends on scheduling decisions (task placement in time and space). Considering
a task i , only tasks that are assigned to a different core may interfere with i , and only tasks that
execute within a time window overlapping with that of i actually interfere. This section presents,
using a top-down approach, how a precise estimation of communication costs is obtained. For
the whole document, concurrent tasks is used for tasks with no data dependencies that may be
executed in parallel, while parallel tasks is used for tasks that are scheduled to run in overlapping
time windows.

4.1 Accounting for the actual concurrency in applications
Equation (1d) statically computes communication costs assuming all cores (NbCores − 1) execute a
communicating phase and thus always delay every memory access, which is pessimistic. From the
example in Figure 1, and assuming that the application is the only one executing on the architecture,
no parallel request can arise at the time of the read phase of task Split1 because of the structure of

This article was presented in the International Conference on Embedded Software (EMSOFT) 2017 and appears as part of
the ESWEEK-TECS special issue

Tightening contention delays while scheduling parallel applications 164:7

the application. Similarly on the same example, the read phase of task Add can only be delayed by
the read and write phases of task Sub.

A pair of tasks is concurrent if they do not have data dependencies between each other, i.e. tasks
that may be executed in parallel. As an example, in Figure 1, tasks Add and Sub are concurrent.
Determining if two tasks are concurrent is usually NP-complete [24]. However, with the properties
of our task model, in particular the presence of statically-paired communication points, evaluation
of concurrency is polynomial. Two tasks are concurrent if there exists no path connecting them in
the task graph. By building the transitive closure of the task graph, using for example the classical
Warshall’s algorithm [26], two tasks i and j are concurrent if there is no edge connecting them in the
transitive closure. In the following, function are_conc(i ,j) will be used to indicate task concurrency
according to the method described in this section. It returns true when tasks i and j are concurrent
and false otherwise.

According to the knowledge of the structure of the task graph, equation (1d) can then be refined
as follows. Instead of considering NbCores −1 contentions for every memory access, the worst-case
number of contenders with a task i will be min(NbCores-1, | j | s.t. are_conc(i ,j)).

4.2 Further refining the worst-case degree of interference
Keeping the example from Figure 1, if the two concurrent tasks Add and Sub are mapped on the
same core and thus are executed in sequence, then their communication phases do not interfere
anymore. Knowledge of tasks’ scheduling (tasks placement and time window assigned to each
task), when known, can further help refining the amount of interference suffered by a task.
Reasoning in reverse, two phases do not overlap if one ends before the other starts, which

leads for tasks with read-execute-write semantics to equation (2). For two tasks i and j, taking two
phases τXi and τYj , where X and Y can either represent a read or a write, equation (2) states that if
phase τYj ends before phase τXi starts or vice versa, then the two phases τXi and τYj do not overlap.
We consider here the end date as the first discrete time point at which the task is over, thus no
overlapping occurs when endYj and startXi are equal.

endYj ≤ startXi ∨ end
X
i ≤ startYj (2)

Then, by negating equation (2), we get equation (3) that will be true if two tasks have overlapping
execution windows. In the following, are_OL(τXi ,τ

Y
j) returns true if the communication delay of

phases τXi and τYj overlap, and false otherwise.

are_OL(τXi ,τ
Y
j) = ¬(end

Y
j ≤ startXi ∨ end

X
i ≤ startYj) ≡ (endYj > startXi ∧ end

X
i > startYj) (3)

Assuming the schedule is known, the degree of interference a task can suffer from can be deter-
mined by counting the number of other tasks that overlap in the schedule. Only concurrent tasks
(function are_conc) can overlap, because dependent (not concurrent) tasks have data dependencies.

As constrained by the task model (Section 3.2), only communication phases request accesses to
the bus, thus only the amount of interference of the read and write phases needs to be computed.
This leads to equations (4a) and (4b) that jointly compute the number of interfering tasks for each
communication phase (#inter f ri and #inter f wi for respectively the read and write) of a task i by
detecting overlapping executions in the set of concurrent tasks.

This article was presented in the International Conference on Embedded Software (EMSOFT) 2017 and appears as part of
the ESWEEK-TECS special issue

164:8 B. Rouxel, S. Derrien and I. Puaut

∀i ∈ T ;

#inter f ri =
∑

j ∈T |are_conc (i, j)

are_OL(τ ri ,τ
r
j) +

∑
j ∈T |are_conc (i, j)

are_OL(τ ri ,τ
w
j) (4a)

#inter f wi =
∑

j ∈T |are_conc (i, j)

are_OL(τwi ,τ
w
j) +

∑
j ∈T |are_conc (i, j)

are_OL(τwi ,τ
r
j) (4b)

The values of #inter f ri and #inter f wi from equations (4a) and (4b) can then replace the pessimistic
value of NbCores −1 from equation (1d) to tighten the worst-case delay of the read and write phases,
leading to equations (5a) and (5b).
∀i ∈ T ;

delayri = Tslot · #waitinдSlots · #inter f
r
i +Tslot · #chunks + remaininдTime (5a)

delaywi = Tslot · #waitinдSlots · #inter f
w
i +Tslot · #chunks + remaininдTime (5b)

This last refinement depends on the knowledge of the schedule. The two scheduling techniques
described in Section 5 use these formulas jointly with schedule generation.

5 CONTENTION-AWARE MAPPING/SCHEDULING ALGORITHMS
This section presents two scheduling techniques that integrate the precise interference costs calcu-
lated in the previous section, first as a constraints’ system mapped to Integer Linear Programming
(ILP) formulation, second as a heuristic method. The main outcome of both techniques is a static
mapping and schedule for each core, for one single application. According to the terminology given
in [8], the proposed scheduling techniques are partitioned, time-triggered and non-preemptive.

5.1 Integer Linear Programming technique
An Integer Linear Programming (ILP) problem consists of a set of integer variables constrained by
linear inequalities. Solving an ILP problem then consists in optimizing (mimimizing or maximizing)
a linear function of the variables. When scheduling and mapping a task graph on a multi-core
platform, the objective is to obtain the shortest schedule. Table 1 summarizes the notations and
variables needed by the ILP formulation.

For a concise presentation of constraints, the two logical operators ∨,∧ are directly used in the
text of constraints. These operators can be transformed into linear constraints using the simple
transformation rules from [3].

Objective function. The goal is to minimize the makespan of the schedule, that is minimizing the
end time of the last scheduled task. The objective function, given in equation (6a), is to minimize
the makespan Θ. Equation (6b) constraints the completion time of all tasks (starting of write phase,
ρwi , plus its WCET, delaywi) to be inferior or equal to the schedule makespan.

minimize Θ (6a)
∀i ∈ T ; ρwi + delay

w
i ≤ Θ (6b)

Problem constraints. Some basic rules of a valid schedule are expressed in the following equations.
Equation (7a) ensures the unicity of a task mapping. Equation (7b) indicates if two tasks are mapped
on the same core, with a simplification to decrease the number of constraints. Equation (7c) orders
tasks such that a task scheduled before an other one can not also be scheduled after it, and also
imposes an ordering between pairs of tasks. Finally equation (7d) calculates ordering of tasks
assigned to the same core.

This article was presented in the International Conference on Embedded Software (EMSOFT) 2017 and appears as part of
the ESWEEK-TECS special issue

Tightening contention delays while scheduling parallel applications 164:9

Table 1. Notations & ILP variables

Se
ts T the set of tasks

P the set of processors/cores

Fu
nc
tio

ns predecessors (i) returns the set of direct predecessors of task i

successors (i) returns the set of direct successors of task i
are_conc (i, j) returns true if i and j are concurrent, as defined in Section 4.1

Co
ns
ta
nt
s

Ci
task i execute phase’s WCET computed in isolation
as stated in Section 3.2

Di, j amount of data exchanged between task i and j

In
te
ge
rv

ar
ia
bl
es

Θ schedule makespan
ρri , ρi , ρ

w
i start times of read, execute, write phases of task i

δ ri total amount of data read/written by a read/write phase of i according
δwi to predecessors/successors’ mapping
chunkri the number of full slots to read/write
chunkwi δ ri /δ

w
i from eq. (1a)

remaininдTimeri the remaining time to read/write that
remaininдTimewi do not fit in a full slot from eq. (1b)
waitinдSlotsri the number of full slots a read/write
waitinдSlotswi phase must wait from eq. (1c)
inter f ri the number of interfering tasks of the read/write phases of i
inter f wi from eq. (4a) and (4b)
delayri task i read, write phases’ WCET
delaywi from equations (5a) and (5b)

Bi
na
ry

va
ria

bl
es pi,c = 1 task i is mapped on core c

mi, j = 1 tasks i & j are mapped on the same core
ai, j = 1 task i is scheduled before task j, in the sense ρri ≤ ρrj
ami, j = 1 same as ai, j but on the same core

ovXYi, j = 1 phase X of i overlaps with phase Y of j
XY ∈ {rr ,ww, rw,wr }

∀i ∈ T ;
∑
c ∈P

pi,c = 1 (7a)

∀(i, j) ∈ T ×T ; i , j,mi, j =
∑
c ∈P

(pi,c ∧ pj,c) and mi, j =mj,i (7b)

∀(i, j) ∈ T ×T ; i , j,ai, j + aj,i = 1 (7c)
∀(i, j) ∈ T ×T ; i , j,ami, j = ai, j ∧mi, j (7d)

Read-execute-write semantics constraints. We impose each phase to execute contiguously, as
expressed in equations (8a) and (8b). The start time of the execute phase of task i (ρi) is immediately
after the completion of the read phase (start of read phase ρri + communication cost delayri).
Similarly, the write phase starts (ρwi) right after the end of the execute phase (start of read phase ρi
+ WCET Ci).

This article was presented in the International Conference on Embedded Software (EMSOFT) 2017 and appears as part of
the ESWEEK-TECS special issue

164:10 B. Rouxel, S. Derrien and I. Puaut

∀i ∈ T , ρi = ρri + delay
r
i (8a)

∀i ∈ T , ρwi = ρi +Ci (8b)

Absence of overlapping on the same core. Equation (9) forbids the overlapping of two tasks when
mapped on the same core by forcing one to execute after the other.

∀i, j ∈ T ×T ; i , j, ρwi + delay
w
i ≤ ρrj +M (1 − ami, j) (9)

This constraint must be activated only if the two tasks are mapped on the same core. Thus, a
nullification method is applied, with the use of a big-M notation [15]. The selected value for the
big-M constant is the makespan of a sequential schedule on 1 core, the sum of tasks’ WCETs (see
equation (10)), which is the worst scenario that can arise.

M =
∑
i ∈T

Ci (10)

Data dependencies in the task graph. Equation (11) enforces data dependencies by constraining
all tasks to start after the completion of all their respective predecessors.

∀i ∈ T ,∀j ∈ predecessors (i); ρwj + delay
w
i ≤ ρri (11)

Computing communication phases interference. All the following equations implement, using
linear equations, the refinement of contention duration presented in Section 4.2, with the use of the
function are_conc (i, j) to exclude from the search space, tasks that never interfere with each other.
Equations (12a) to (12d) implement function are_OL derived from equation (3). For each pair of
communication phases, the equations indicate if they are overlapping in the schedule (ovXY ,Z = 1,
with X ∈ {rr ,ww, rw,wr }).

Note that when there is no data for the considered communication phase (δ ri = 0,δwi = 0), then
there is no possible overlapping, and then each ovXY ,Z is constrained to be equal to 0.
∀i ∈ T ,∀j ∈ are_conc (i, j);

ovr ri, j = δ ri > 0 ∧ δ rj > 0 ∧ ρri < ρ j ∧ ρrj < ρi (12a)
ovww

i, j = δwi > 0 ∧ δwj > 0 ∧ ρwi < ρwj + delay
w
j ∧ ρwj < ρwi + delay

w
i (12b)

ovrwi, j = δ ri > 0 ∧ δwj > 0 ∧ ρri < ρwj + delay
w
j ∧ ρwj < ρi (12c)

ovwr
i, j = δwi > 0 ∧ δ rj > 0 ∧ ρwi < ρ j ∧ ρrj < ρwi + delay

w
i (12d)

Equations (13a) and (13b) implement equations (4a) and (4b) by counting the number of interfering
tasks in inter f ri and inter f wi for respectively the read and write phases of task i .
∀i ∈ T ;

inter f ri =
∑

j ∈T |are_conc (i, j)

ovr ri, j +
∑

j ∈T |are_conc (i, j)

ovrwi, j (13a)

inter f wi =
∑

j ∈T |are_conc (i, j)

ovww
i, j +

∑
j ∈T |are_conc (i, j)

ovwr
i, j (13b)

Finally, equation (14) contains two optimizations that constrain the overlapping variables, to
improve the solving time.

ovr ri, j = ov
r r
j,i ovwr

i, j = ov
rw
j,i (14)

Estimation of worst-case communication duration. To estimate the time needed for the com-
munication phases, the volume of data read/written respectively by the read or write phases is
required (δ ri ,δ

w
i). This volume of data must account for the task mapping, as no communication

This article was presented in the International Conference on Embedded Software (EMSOFT) 2017 and appears as part of
the ESWEEK-TECS special issue

Tightening contention delays while scheduling parallel applications 164:11

overhead should be charged when both the producer and consumer are mapped on the same core
(mi, j = 1). This leads to equations (15a) and (15b) that sum the data (constant Di, j extracted from
the application) read or written depending on the mapping of the predecessors and successors of a
task.
∀i ∈ T ;

δ ri =
∑

j ∈predecessors (i)

D j,i · (1 −mj,i) (15a)

δwi =
∑

j ∈successors (i)

Di, j · (1 −mi, j) (15b)

The next group of equations (16a)-(16d) encodes the round-robin bus arbitration policy, equations
(1a)-(1d), and later refined in equation (5). For conciseness, we skip equations related to the write
phase as they are equivalent to those for the read phase with some trivial substitutions.
Equation (16a) computes the number of full slots needed as in (1a), according to the volume

of data effectively transmitted (δ ri) and the transfer rate (Dslot). Equation (16b) determines the
remaining time as in (1b), equation (16c) computes the number of waiting slots of Tslot duration as
in (16c), and finally equation (16d) estimates the communication delay required by the read phase
of i as in equation (5).
∀i ∈ T ;

chunksri = ⌊δ
r
i /Dslot ⌋ (16a)

remaininдTimeri = (δ ri mod Dslot) · (Tslot/Dslot) (16b)
waitinдSlotsri = ⌈δ

r
i /Dslot ⌉ (16c)

delayri = Tslot ·waitinдSlots
r
i · inter f

r
i +Tslot · chunks

r
i + remaininдTimeri (16d)

The reader may note that equations (16a)-(16c) are not linear. They can however easily be
linearized, without any loss of information, into the set of equations (17a)-(17c).
∀i ∈ T ;

δ ri = chunks
r
i ·Tslot + remaininдTimeri (17a)

δ ri = waitinдSlots
r
i ·Tslot − unused_rest

r
i (17b)

unused_restri ≥ remaininдTimeri (17c)

A remaining issue emerges in the cost model provided in equation (16d), because this equation is
quadratic and non-convex (with the termwaitinдSlotsri ∗ inter f

r
i , both operands being problem’s

variables as defined by equations (16c) and (13a)). To model our problem as an instance of ILP, we
make the choice of using a safe linear approximation of equation (16d), in which we substitute
variable waitinдSlotsri by a constantWAIT r

i that may overestimate the number of waiting slots.
We do so by considering the worst case scenario in terms of transmitted data, that is, when all data
exchanged between dependant tasks occur through the shared bus, which happens for a read phase
when all the predecessors of the task are mapped on different cores.WAIT r

i is thus determined by
the sum of all data read D j,i as in equation (18).

∀i ∈ T ; WAIT r
i = ⌈(

∑
j ∈predecessors (i)

D j,i)/Tslot ⌉ (18)

This over-approximation of communication costs induces the solver to map tasks in sequence
on the same core or isolate communication phases to avoid interference.

This article was presented in the International Conference on Embedded Software (EMSOFT) 2017 and appears as part of
the ESWEEK-TECS special issue

164:12 B. Rouxel, S. Derrien and I. Puaut

5.2 Heuristic technique based on list scheduling
The basic idea of the proposed heuristic, based on forward list scheduling, is to order tasks from
the task graph, and then to add each task one by one in the schedule without backtracking, while
keeping the goal of minimizing the overall makespan of the schedule. In the following, tasks are
sorted in topological order. Task ordering is a topic on its own and will not be further discussed in
this paper.

The method is sketched in algorithm 1. It uses the task graph as input, sorts the nodes to create
the list (line 1), and then a loop iterates on each task while there exists tasks to schedule (lines
4-18). This heuristic uses an As Soon As Possible (ASAP) strategy when mapping a task. It tries to
schedule the task as early as possible on every processor, and then selects the processor where the
mapping minimizes the overall makespan (line 15).
As previously explained, the communication cost is dependent on task placement. Thus, after

scheduling each task, the communication costs in relation with the newly scheduled task must
be recomputed and tasks must be moved on the time line of each involved core to ensure a valid
schedule, i.e. a schedule accounting for all interference (lines 11 and 14). Moreover, the heuristic
also enforces read/execute/write phases to be scheduled contiguously.

ALGORITHM 1: Forward list scheduling
Input :A task graph G = (T, E) and a set of processors P
Output :A schedule

1 Qready← TopologicalSortNode(G)
2 Qdone← ∅
3 schedule← ∅
4 while t ∈ Qready do
5 Qready← Qready \{t }
6 Qdone← Qdone ∪{t }

/* tmpSched contains the best schedule for the current task */

7 tmpSched← ∅ with makespan = ∞
8 foreach p ∈ P do
9 copyef f ← schedule

/* Set t in copyef f on p the earliest in the schedule */

10 MapTaskEarliestStartTime(copyef f , t ,p)

11 AdjustSchedule(copyef f ,Qdone, t)

12 copymutex ← schedule
/* Set t in copymutex on p the earliest in mutual exclusion with others */

13 MapTaskEarliestStartTime(copymutex , t ,p)

14 AdjustSchedule(copymutex ,Qdone, t)

15 tmpSched←minmakespan (tmpSched, copymutex , copyef f)

16 end
17 schedule← tmpSched
18 end
19 return schedule

Finding the best solution between overlapping and mutual exclusion. In the ILP formulation, to
minimize the overall makespan, the ILP solver had the opportunity to select, on a per task basis,
the best solution between two options: synchronize every communication phase (perform them

This article was presented in the International Conference on Embedded Software (EMSOFT) 2017 and appears as part of
the ESWEEK-TECS special issue

Tightening contention delays while scheduling parallel applications 164:13

in mutual exclusion) to obtain a contention-free schedule, or enable concurrency if it results in a
shorter global schedule. A similar approach is used in the heuristic. Two schedules are computed:
one allowing overlapping between concurrent tasks (lines 9-11) and the other one avoiding it (lines
12-14). Then the shortest of the two schedules is selected (line 15).

Updating the schedule to cope with interference. Each time a task is added, new interferences caused
by the addition of the task in the schedule must be added, and the delay of some communication
phases must be recomputed.

(a) (b)

Fig. 2. Example of adjustments that occur while scheduling. (2a) initial schedule of 3 tasks. (2b) adjusted
communication phase delays after the addition of task D

As an example, Figure 2a depicts a partial initial schedule where arrows depict causality between
tasks, red dashes draw the writing delay delaywA , and green dots draw the reading delay delayrC . A
taskAmapped on P1 sends 4 data items to a taskC mapped on P2 with aTslot = 3 andDslot = 1, thus
delaywA = delay

r
C = 4 (equation (5), in this situation none of them suffers from any concurrence).

Figure 2b sketches the addition of task D on P3, it reads 4 data items written by A. Thus, the new
writing delay for taskA becomes delaywA = 8 (still no concurrence on task A). The first consequence
is to move task B to guarantee the blocking communication restriction (Section 3.1). Second, the
reading delay delayrC must be adjusted now to account for the interference introduced by the
reading delay delayrD and becomes delayrC = 10 (according to equation (5)), then task C is delayed
accordingly.
Whenever a communicating task that was already mapped needs to be rescheduled/delayed,

it may change the number of interfering tasks. The communication delay of all tasks impacted
by this change must therefore be recomputed, since they may in turn also create interference.
The partial communication delay calculation must therefore proceed iteratively until no task is
impacted. Convergence is always reached since, at worst, every concurrent task will interfere.

To reduce the number of tasks impacted by each adjustment, algorithm 2 first computes the set
of related tasks (line 1), i.e. the tasks that can be impacted by the addition of the current task. The
set is constructed by looking into the schedule for the earliest scheduled predecessor of the current
task, then it includes all tasks scheduled after this predecessor on all processors.
To propagate these changes, algorithm 2 recomputes the delay of each communication phase

(line 2). Then, it remaps each task ASAP (line 3) with respect of the previous choice considering
synchronizations (explained in the previous paragraph). Due to previous tasks’ movement on

This article was presented in the International Conference on Embedded Software (EMSOFT) 2017 and appears as part of
the ESWEEK-TECS special issue

164:14 B. Rouxel, S. Derrien and I. Puaut

ALGORITHM 2: AdjustSchedule : Updating the schedule to cope with interference
Input :An incomplete schedule schedule, the list of already mapped tasks Qdone and the newly mapped

task cur_task
Output :An updated schedule

1 related_set← BuildRelated(schedule, Qdone, cur_task)
2 Compute read/write phases’ delay ∀t ∈ related_set

/* WCET of read/write might have changed, maybe we should move backward/forward some tasks */

3 Remap task t ∈ related_set as early as possible according to previous decision regarding synchronization

4 while schedule.lenдth is not stable do
5 Compute read/write phases’ delay ∀t ∈ related_set
6 foreach t ∈ related_set do
7 foreach t ′ ∈ related_set| start time of t ′ > start time of t do
8 if t and t’ are on the same processor ∧ t extends itself on t’ then
9 Add delay to t ′ to start after t

10 else if t and t’ are on different processor ∧ are_OL(t,t’) ∧ is_synchronized(t’) then
11 Add delay to re-synchronize t ′

12 end
13 end
14 end

the processor time lines, lines 6-13 shift forward tasks that need to be either re-synchronized, or
because one earlier mapped extends itself on it. This process is then repeated until the length of
the schedule becomes stable.

Precision of the estimation of communication costs. Compared to the ILP formulation, the heuristic
does not suffer from the aforementioned over-estimation, thus the communication cost can be
computed as accurately as possible using equation (5) from Section 4.2 and the effective amount of
data according to tasks’ placement. For conciseness, the function to compute the communication
cost of the read and write phases (line 2 in algorithm 2) are not detailed as they are just the
application of equations (1) refined with equation (5).

6 EXPERIMENTS
Experiments were conducted on real code in the form of a subset of the StreamIT benchmark suite
[25], as well as on synthetic task graphs generated using the TGFF [11] graph generator.
Applications from the StreamIT benchmark suite are modeled using fork-join graphs and come

with timing estimates for each task and amount of data exchanged between them. Table 2 summa-
rizes the benchmarks we used for our experiments. We were not able to use all the benchmarks
and applications provided in the suite due to difficulties when extracting information (task graph,
WCET, . . .) or because some test cases are linear chains of tasks with no concurrency. For each
benchmark the table includes its number of tasks, the width of the graph (maximum number of
tasks that may run in parallel) and the average amount of bytes exchanged between pairs of tasks.
All average values given in the rest of the paper are arithmetic means.

Task Graph For Free (TGFF) was used when there is a need to generate a large number of task
graphs. It is first used to evaluate the quality of our heuristic against the ILP formulation. Due to
the intrinsic complexity of solving our scheduling problem using ILP, we need for that experiment
small task graphs such that the ILP is solved in reasonable time. TGFF was also used to test our
heuristic technique for applications larger than the StreamIT benchmarks.

This article was presented in the International Conference on Embedded Software (EMSOFT) 2017 and appears as part of
the ESWEEK-TECS special issue

Tightening contention delays while scheduling parallel applications 164:15

Table 2. StreamIT benchmark suite scheduling

Name #Tasks Width avg data
(bytes)

802.11a 113 7 7048
audiobeam 20 15 60
beamformer 56 12 96
compCnt 31 8 64
dct_comp 13 3 768
dct_verif 7 2 512
fft2 26 2 1024
fft3 82 16 256
fft4 10 2 8
fft5 115 16 128
fhr 29 7 2048
filterbank 53 8 256

Name #Tasks Width avg data
(bytes)

fm 67 20 24
hdtv 150 24 106e4
merge 31 8 64
mp3 116 36 36e3
mpd 201 5 66e3
mpeg2 43 3 101e4
nokia 178 32 1920
perftest4 16 4 66e3
tconvolve 75 36 98e6
tde 15 12 48
vocoder 115 17 240

We generated two sets of task graphs: one with relatively small task graphs (referred as STG),
and another with bigger graphs (referred as BTG). For both sets, we used the latest version of
the TGFF task generation software to generate task graphs with tasks’ chains of different lengths
and widths, including both fork-join graphs and more evolved structures (e.g. multi-DAGs). Their
resulting parameters are presented in Table 3. The table includes for both sets the number of task
graphs, their number of tasks, the width of the task graph, the range of WCET values for each task3
and the range of amount of exchanged data in bytes between pairs of tasks. The TGFF parameters
for STG (average and indicator of variability) are set in such a way that the average values for task
WCETs and volume of data exchanged between task pairs correspond to the analogous average
values for the StreamIT benchmarks.

Table 3. Task graph parameters for synthetic task graphs

#Task graphs #Tasks Width WCET Amount of
<min,max,avg> bytes exchanged

STG 200 3, 34, 14 1, 11, 3 [1; 70] [0; 11]
BTG 1000 9, 687, 228 1, 21, 8 [8; 999] [0; 70]

All reported experiments have been conducted on several nodes from an heterogeneous comput-
ing grid with 138 computing nodes (1700 cores). In all experiments Tslot is precised, and a transfer
rate of one data word (32 bits) per time unit is used.

6.1 Scalability of the ILP formulation
Solving an ILP problem for a mapping/scheduling problem on multi-cores is known to be NP-hard
[5]. Thus, the running time of our ILP formulation is expected to explode as the number of tasks
grows. To evaluate the scalability of the ILP formulation with the number of tasks, a large number of
3The reader may notice that the WCET average value is not perfectly in the middle of the min and max values. This is due
to the generation of random numbers in TGFF (pseudo-random, not perfectly random) combined to the limited number of
values generated.

This article was presented in the International Conference on Embedded Software (EMSOFT) 2017 and appears as part of
the ESWEEK-TECS special issue

164:16 B. Rouxel, S. Derrien and I. Puaut

different configurations is needed, explaining why we used synthetic task graphs for the evaluation.
For each task graph in set STG we vary the number of cores in interval [2; 15] and vary Tslot in
interval [1; 10]. With those varying parameters, the total number of scheduling problems to solve
is 200 · 10 · 14 = 28000. The ILP solver used is CPLEX v12.6.04 with a timeout of 11 hours.

Fig. 3. Scalability of ILP formulation (synthetic task graphs / STG)

Figure 3 draws the average solving time per number of tasks in each graph. As expected, when
the number of tasks grows, the average solving time explodes, thus motivating the need for a
heuristic that produces schedules much faster. Similar observations were made on the StreamIT
benchmarks, for which an exact solution was found for only 17 out of the 23 benchmarks.

6.2 Quality of the heuristic compared to ILP
The following experiments aim at estimating the gap between makespans of schedules generated
by the heuristic (see Section 5.2) opposed to solutions found by the ILP formulation. We expect this
gap to be small. To perform the experiments we used the 200 task-graphs from the STG task set
with the same parameters’ variation as previously: number of cores ∈ [2; 15] and Tslot ∈ [1; 10].
The heuristic is implemented in C++ and CPLEX was configured with a timeout of 11 hours.

Table 4. Degradation of the heuristic compared with the ILP (synthetic task graphs / STG)

% of exact results degradation
(ILP only) <min,max,avg> %

98% -8%, 43%, 5%

Table 4 summarizes the results. The first column of Table 4 presents the percentage of exact
results the ILP solver is able to find in the granted time. We only refer to the exact solutions for
the comparison as the feasible ones (i.e not exact) might bias the conclusion on the quality of the
heuristic compared to the ILP. The next column presents the minimum, maximum and average
degradation in percent, computed using makespans with formula (heuristic − ILP)/ILP . Positive
values mean a degradation of the heuristic against the ILP formulation, while negative values show
an improvement which is due to the over-approximation of the communication delay in the ILP
formulation (see Section 5.1).
As we can observe, the average degradation is low, which means our heuristic has acceptable

quality. A deeper analysis of the distribution of degradation, not included for space consideration,
shows that 80% of the heuristic schedules are less than 10% worse than the ILP formulation solutions.
4https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

This article was presented in the International Conference on Embedded Software (EMSOFT) 2017 and appears as part of
the ESWEEK-TECS special issue

Tightening contention delays while scheduling parallel applications 164:17

We also observed a schedule generation time far much lower than the ILP, < 1 second on average,
with a maximum observed of 2 seconds. Solving time is dependent on the number of re-adjustments
the heuristic must perform to cope with effective amount of interference.
The influence of task sorting has a significant impact on the heuristic output. We chose a

topological order with random tie breaking as stated in Section 5.2. This choice of sorting algorithm
rather than simple explains the under-performance of 43% on the worst-case. We did not include a
comparative study on sorting algorithm, considered as out of the scope of the paper.

6.3 Quality of the heuristic compared to basic contention analysis
We estimate the gain when using our method to tighten communication delays over the same
heuristic using the pessimistic estimation of interference from equation (1). The higher is the gain
the tighter is the proposed estimation of communication delays. The experiment was performed on
the StreamIT benchmarks. The target architecture configuration includes 15 cores, and a value of
Tslot = 3 is used as in [18].

Fig. 4. Gain in % obtained by precise contention analysis (heuristic, StreamIT benchmarks)

Results are depicted in Figure 4 by blue bars. The gain is computed using equation 19.
worst concurreny − accurate inter f erence

worst concurrency
(19)

Results show that the gain to use the accurate degree of interference decreases the overall
makespan of 19% on average over the worst case concurrency, demonstrating the benefits of
precisely computing the degree of interference at schedule time.

6.4 Quality of the heuristic compared to synchronized communication
Recent papers [1, 2, 21] suggested to build contention-free schedules to nullify interference cost. Due
to the different task models and system models in the aforementioned works, a direct comparison
with them is hard to achieve. Thus, we modified our heuristic to produce a schedule without any
contention and to be as close as possible to the ideas defended in the mentioned papers. The gain of
a contention-free heuristic against a worst contention one is depicted for the StreamIt benchmarks
in Figure 4 by red bars.
Among the contention-aware and contention-free variants of our heuristic, no method outper-

forms the other for all benchmarks. Moreover, the difference between the schedule makespans
using the two variants is very small. The average difference is 0,08%, with a worst value of 0.3%.
Synchronized execution (red bars) gives better results for fft3, fft5, filterbank, fm, hdtv, mp3, tconvolve

This article was presented in the International Conference on Embedded Software (EMSOFT) 2017 and appears as part of
the ESWEEK-TECS special issue

164:18 B. Rouxel, S. Derrien and I. Puaut

and vocoder ; our proposed heuristic (blue bars) gives better for audiobeam, beamformer and mpd;
the results for all other benchmarks are identical. Regarding schedule generation duration for the
StreamIT benchmarks, contention-free solutions are found in less than 30 seconds on average, while
contention-aware once need less than 3 minutes on average. The shortest schedule generation times
were obviously observed when generating contention-free schedules, because no estimation of
interference costs has to be performed at all. We believe that our contention-aware scheduling
heuristic will be better suited to task models in which communications are not separated from
calculations, i.e. non-PREM task-set. Quantitative evaluation of the obtained benefit for such a task
model is left for future work.

6.5 Impact of Tslot on the schedule
With our heuristic, we finally studied the influence of the duration Tslot on the overall makespan,
assuming the overhead negligible when switching between slots. We chose to fall back on synthetic
task graphs to benefit from a wider range of different test cases. Here the BTG task set is employed.
For each graph, we generated three versions of the same topology but with different amount of
exchanged data between tasks to study the influence of the durationTslot on graphs that exchanges
few data [0; 5], reasonable amount of data [5; 15] and large amount of data [15; 70]. The duration
Tslot is in the range [1; 40] as it covers all scenarios to exchange data in one or several chunks.

Fig. 5. Average makespan when varying Tslot (synthetic task graphs / BTG)

To compute the results of this experiments, we set a timeout to 1h, leaving us 75.6% of the initial
number of task graphs. Results are presented in Figure 5 where the three curves correspond to the
average makespan of each category over the value of Tslot . We observe that Tslot has very little
impact on task graphs with few communications (crossed line). While there is an impact on task
graphs with bigger amount of data exchanged (continuous line). The exposed results confirm that it
is a better choice to keep this Tslot small to reduce the waiting time between each slot even if there
are several chunks. This allows small packets of data to be handled faster when in competition
with bigger packets.

7 CONCLUSION
In this work, we show how to take advantage of the structure of a parallel application, along with
its target hardware platform, to obtain tight estimates of contention delays. Our approach builds on
a precise model of the cost of bus contention for a round-robin bus arbitration policy, which we use
to define two scheduling and mapping strategies. Our experimental results show that, compared
to a scenario where we account for worst case contention, our approach improves the schedule
makespan by 19% on average.
One of the limitation in our approach is its restriction to blocking communications. A natural

extension of this work is therefore to relax this constraint and introduce support for asynchronous

This article was presented in the International Conference on Embedded Software (EMSOFT) 2017 and appears as part of
the ESWEEK-TECS special issue

Tightening contention delays while scheduling parallel applications 164:19

communications, which are notoriously more challenging to support in a real-time context. Another
possible research direction is to further refine the contention model, by more accurately capturing
the actual duration of contention phases between communicating tasks. Extensions to architectures
with local caches is another direction for future research.

REFERENCES
[1] Ahmed Alhammad and Rodolfo Pellizzoni. 2014. Time-predictable execution of multithreaded applications on multicore

systems. In Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014. IEEE, 1–6.
[2] Matthias Becker, Dakshina Dasari, Borislav Nicolic, Benny Akesson, Vincent Nélis, and Thomas Nolte. 2016. Contention-

free execution of automotive applications on a clustered many-core platform. In Real-Time Systems (ECRTS), 2016 28th
Euromicro Conference on. IEEE, 14–24.

[3] Gerald G Brown and Robert F Dell. 2007. Formulating integer linear programs: A rogues’ gallery. INFORMS Transactions
on Education 7, 2 (2007), 153–159.

[4] Yoonseo Choi, Yuan Lin, Nathan Chong, Scott Mahlke, and Trevor Mudge. 2009. Stream compilation for real-time
embedded multicore systems. In Code generation and optimization, 2009. CGO 2009. International symposium on. IEEE,
210–220.

[5] Edward G Coffman Jr, Michael R Garey, and David S Johnson. 1996. Approximation algorithms for bin packing: a
survey. In Approximation algorithms for NP-hard problems. PWS Publishing Co., 46–93.

[6] Dakshina Dasari and Vincent Nélis. 2012. An Analysis of the Impact of Bus Contention on the WCET in Multicores. In
High Performance Computing and Communication & 2012 IEEE 9th International Conference on Embedded Software and
Systems (HPCC-ICESS), 2012 IEEE 14th International Conference on. IEEE, 1450–1457.

[7] Dakshina Dasari, Vincent Nelis, and Benny Akesson. 2016. A framework for memory contention analysis in multi-core
platforms. Real-Time Systems 52, 3 (2016), 272–322.

[8] RI Davis and A Burns. 2011. A survey of hard real-time scheduling algorithms for multiprocessor systems. in ACM
Computing Surveys (2011).

[9] Benoît Dupont De Dinechin, Duco Van Amstel, Marc Poulhi‘es, and Guillaume Lager. 2014. Time-critical computing on
a single-chip massively parallel processor. In Design, Automation and Test in Europe Conference and Exhibition (DATE),
2014. IEEE, 1–6.

[10] Steven Derrien, Isabelle Puaut, Panayiotis Alefragis, Marcus Bednara, Harald Bucher, ClÃľment David, Yann Debray,
Umut Durak, Imen Fassi, Christian Ferdinand, Damien Hardy, Angeliki Kritikakou, Gerard Rauwerda, Simon Reder,
Martin Sicks, Timo Stripf, Kim Sunesen, Timon ter Braak, Nikolaos Voros, and JÃĳrgen Becker. 2017. WCET-Aware
Parallelization of Model-Based Applications for Multi-Cores: the ARGO Approach. In Design, Automation and Test in
Europe Conference and Exhibition (DATE), 2017. IEEE.

[11] Robert P Dick, David L Rhodes, andWayneWolf. 1998. TGFF: task graphs for free. In Proceedings of the 6th international
workshop on Hardware/software codesign. IEEE Computer Society, 97–101.

[12] Gabriel Fernandez, Jaume Abella Ferrer, Eduardo Qui nones Moreno, Christine Rochange, Tullio Vardanega, Fran-
cisco Javier Cazorla Almeida, et al. 2014. Contention in multicore hardware shared resources: Understanding of the
state of the art. (2014).

[13] Georgia Giannopoulou, Nikolay Stoimenov, Pengcheng Huang, Lothar Thiele, and Benoît Dupont Dinechin. 2016.
Mixed-criticality Scheduling on Cluster-based Manycores with Shared Communication and Storage Resources. Real-
Time Systems Journal 52, 4 (July 2016), 399–449.

[14] Michael I Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S Meli, Andrew A Lamb, Chris Leger, Jeremy
Wong, Henry Hoffmann, David Maze, et al. 2002. A stream compiler for communication-exposed architectures. In
ACM SIGPLAN Notices, Vol. 37. ACM, 291–303.

[15] Igor Griva, Stephen G. Nash, and Ariela Sofer. 2008. Linear and Nonlinear Optimization, Second Edition. Society for
Industrial Mathematics.

[16] Rihani Hamza, Moy Matthieu, Maiza Claire, Davis Robert I., and Altmeyer Sebastian. 2016. Response Time Analysis of
Synchronous Data Flow Programs on a Many-core Processor. In In proceedings of the 24th International Conference on
Real-Time Networks and Systems (RTNS 2016). ACM.

[17] Catherine E Jarrett, Bryan C Ward, and James H Anderson. 2015. A contention-sensitive fine-grained locking protocol
for multiprocessor real-time systems. In Proceedings of the 23rd International Conference on Real Time and Networks
Systems. ACM, 3–12.

[18] Timon Kelter, Tim Harde, Peter Marwedel, and Heiko Falk. 2013. Evaluation of resource arbitration methods for
multi-core real-time systems.. In WCET. 1–10.

[19] Hyoseung Kim, Dionisio De Niz, Bj"orn Andersson, Mark Klein, OnurMutlu, and Ragunathan Rajkumar. 2014. Bounding
memory interference delay in COTS-based multi-core systems. In Real-Time and Embedded Technology and Applications

This article was presented in the International Conference on Embedded Software (EMSOFT) 2017 and appears as part of
the ESWEEK-TECS special issue

164:20 B. Rouxel, S. Derrien and I. Puaut

Symposium (RTAS), 2014 IEEE 20th. IEEE, 145–154.
[20] Mircea Negrean, Simon Schliecker, and Rolf Ernst. 2009. Response-time analysis of arbitrarily activated tasks in

multiprocessor systems with shared resources. In Proceedings of the Conference on Design, Automation and Test in
Europe. European Design and Automation Association, 524–529.

[21] Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco Caccamo, and Russell Kegley. 2011. A
predictable execution model for COTS-based embedded systems. In 2011 17th IEEE Real-Time and Embedded Technology
and Applications Symposium. IEEE, 269–279.

[22] Simon Schliecker, Mircea Negrean, and Rolf Ernst. 2010. Bounding the shared resource load for the performance
analysis of multiprocessor systems. In Proceedings of the conference on design, automation and test in Europe. European
Design and Automation Association, 759–764.

[23] Martin Schoeberl, Florian Brandner, Stefan Hepp, Wolfgang Puffitsch, and Daniel Prokesch. 2015. Patmos reference
handbook. Technical University of Denmark, Tech. Rep (2015).

[24] Richard N Taylor. 1983. Complexity of analyzing the synchronization structure of concurrent programs. Acta
Informatica 19, 1 (1983), 57–84.

[25] William Thies, Michal Karczmarek, and Saman Amarasinghe. 2002. StreamIt: A language for streaming applications.
In Compiler Construction. Springer, 179–196.

[26] Stephen Warshall. 1962. A theorem on boolean matrices. Journal of the ACM (JACM) 9, 1 (1962), 11–12.
[27] Heechul Yun, Rodolfo Pellizzon, and Prathap Kumar Valsan. 2015. Parallelism-aware memory interference delay

analysis for cots multicore systems. In Real-Time Systems (ECRTS), 2015 27th Euromicro Conference on. IEEE, 184–195.

Received April 2017; revised June 2017; accepted July 2017

This article was presented in the International Conference on Embedded Software (EMSOFT) 2017 and appears as part of
the ESWEEK-TECS special issue

	Abstract
	1 Introduction
	2 Related work
	3 System model
	3.1 Architecture model
	3.2 Task model

	4 Refining communication costs
	4.1 Accounting for the actual concurrency in applications
	4.2 Further refining the worst-case degree of interference

	5 Contention-aware mapping/scheduling algorithms
	5.1 Integer Linear Programming technique
	5.2 Heuristic technique based on list scheduling

	6 Experiments
	6.1 Scalability of the ILP formulation
	6.2 Quality of the heuristic compared to ILP
	6.3 Quality of the heuristic compared to basic contention analysis
	6.4 Quality of the heuristic compared to synchronized communication
	6.5 Impact of Tslot on the schedule

	7 Conclusion
	References

