
Towards Energy-, Time- and Security-aware
Multi-core Coordination ?

Julius Roeder1, Benjamin Rouxel1, Sebastian Altmeyer2, and Clemens Grelck1

1 University of Amsterdam, Science Park 904, 1098XH Amsterdam, Netherlands
initial.lastname@uva.nl

2 University of Augsburg, Universitätsstr. 2, 86159 Augsburg, Germany
altmeyer@informatik.uni-augsburg.de

Abstract. Coordination is a well established computing paradigm with
a plethora of languages, abstractions and approaches. Yet, we are not
aware of any adoption of the principle of coordination in the broad do-
main of cyber-physical systems, where non-functional properties, such as
execution/response time, energy consumption and security are as crucial
as functional correctness.
We propose a coordination approach, including a functional coordination
language and its associated tool flow, that considers time, energy and se-
curity as first-class citizens in application design and development. We
primarily target cyber-physical systems running on off-the-shelf hetero-
geneous multi-core platforms. We illustrate our approach by means of a
real-world use case, an unmanned aerial vehicle for autonomous recon-
naissance mission, which we develop in close collaboration with industry.

Keywords: cyber-physical systems, non-functional properties, real-time,
energy, security

1 Introduction

Cyber-physical systems (CPS) deeply intertwine software with physical compo-
nents, such as sensors and actuators that impact the physical world. Broadly
speaking the software controls the actuators of a physical system based on input
from the sensors and specified policies. Our world is full of cyber-physical sys-
tems, ranging from washing machines to airplanes. Designing secure, safe and
correct cyber-physical systems requires a tremendous amount of verification,
validation and certification.

A common characteristic of cyber-physical systems is that non-functional
properties of the software, such as time, energy and security, are as important
for correct behaviour as purely functional correctness. Actuators must react on
sensor input within a certain time limit, or the reaction might in the worst case
become useless. In addition to general environmental concerns, energy consump-
tion of computing devices becomes crucial in battery-powered cyber-physical
? This work is supported and partly funded by the European Union Horizon-2020
research and innovation programme under grant agreement No. 779882 (TeamPlay).

2 J. Roeder, B. Rouxel, S. Altmeyer, C. Grelck

systems. Security concerns are paramount in many cyber-physical systems due
to their potentially harmful impact on the real world. However, more security
typically requires more computing effort. More computing effort takes more time
and consumes more energy. Thus, time, energy and security are connected in the
triangle of non-functional properties.

The multi-core revolution has meanwhile also reached the domain of cyber-
physical systems. A typical example is the ARM big.LITTLE CPU architecture
that features four energy-efficient Cortex A7 cores and four energy-hungry, but
computationally more powerful, Cortex A15 cores. Many platforms complement
this heterogeneous CPU architecture with an on-chip GPU. Such architectures
create previously unknown degrees of freedom regarding the internal organisa-
tion of an application: what to compute where and when. This induces a global
optimisation problem, for instance minimising energy consumption, under bud-
get constraints, for instance in terms of time and security.

We propose the domain-specific functional coordination language TeamPlay
and the associated tool chain that consider the aforementioned non-functional
properties as first-class citizens in the application design and development pro-
cess. Our tool chain compiles coordination code to a final executable linked with
separately compiled component implementations. We combine a range of anal-
ysis and scheduling techniques for the user to choose from like in a tool box.
The generated code either implements a static (offline) schedule or a dynamic
(online) schedule. With static/offline scheduling all placements and activation
times are pre-computed; with dynamic/online scheduling certain decisions are
postponed until runtime.

Both options are driven by application-specific global objectives. The most
common objective is to minimise energy consumption while meeting both time
and security constraints. A variation of the theme would be to maximise security
while meeting time and energy constraints. Less popular, but possible in princi-
ple, would be the third combination: minimising time under energy and security
constraints.

Both offline and online scheduling share the concept of making conscious
and application-specific decisions as to what compute where and when. Our
work distinguishes itself from, say, operating system level scheduling by the clear
insight into both the inner workings of an application and into the available
computing resources.

The specific contribution of this paper lies in the design of the energy-, time-
and security-aware coordination language and the overall approach. Due to space
limitations we can only sketch out the various elements of our tool chain and
must refer the interested reader to future publications to some degree.

The remainder of the paper is organised as follows: In Section 2 we explain
our view on coordination followed by a detailed account of our (domain-specific)
coordination language in Section 3. In Section 4 we illustrate our approach by
means of a real-world use-case, and in Section 5 we sketch out our tool chain
implementation. We discuss related work in Section 6 and conclude in Section 7.

Energy-, time and security-aware multi-core coordination 3

2 Coordination model

The term coordination goes back to the seminal work of Gelernter and Car-
riero [13] and their coordination language Linda. Coordination languages can be
classified as either endogenous or exogenous [5]. Endogenous approaches provide
coordination primitives within application code. The original work on Linda falls
into this category. Exogenous approaches fully separate the concerns of coordi-
nation programming and application programming

We pursue an exogenous approach and foster the separation of concerns be-
tween intrinsic component behaviour and extrinsic component interaction. The
notion of a component is the bridging point between low-level functionality im-
plementation and high-level application design.

2.1 Components

We illustrate our component model in Fig. 1. Following the keyword component
we have a unique component name that serves the dual purpose of identifying a
certain application functionality and of locating the corresponding implementa-
tion in the object code.

contracts:

time

energy

security

input

output

state

component
code

state*

Functional
contracts:

* *input outputNon−functional

<name>

Fig. 1: Illustration of component model

A component interacts with the
outside world via component-specific
numbers of typed and named input
ports and output ports. As the Kleene
star in Fig. 1 suggests, a component
may have zero input ports or zero
output ports. A component without
input ports is called a source com-
ponent ; a component without out-
put ports is called a sink component.
Source components and sink compo-
nents form the quintessential inter-
faces between the physical world and
the cyber-world representing sensors
and actuators in the broadest sense. We adopt the firing rule of Petri-nets, i.e. a
component is activated as soon as data (tokens) are available on each of its input
ports.

Technically, a component implementation is a function adhering to the C
calling and linking conventions [21]. Name and signature of this function can be
derived from the component specification in a defined way. This function may
call other functions using the regular C calling convention. The execution of a
component (function), including execution of all subsidiary regular functions,
must be free of side-effects. In other words, input tokens must map to output
tokens in a purely functional way. Exceptions are source and sink components
that are supposed to control sensors and actuators, respectively.

4 J. Roeder, B. Rouxel, S. Altmeyer, C. Grelck

2.2 Stateful components

Our components are conceptually stateless. However, some sort of state is very
common in cyber-physical systems. We model such state in a functionally trans-
parent way as illustrated in Fig. 1, namely by so-called state ports that are
short-circuited from output to input. In analogy to input ports and output
ports, a component may well have no state ports. We call such a component
a (practically) stateless component.

Our approach to state is not dissimilar from main-stream purely functional
languages, such as Haskell or Clean. They are by no means free of state either, for
the simple reason that many real-world problems and phenomena are stateful.
However, purely functional languages apply suitable techniques to make any
state fully explicit, be it monads [28] in Haskell or uniqueness types [1] in Clean.
Making state explicit is key to properly deal with state and state changes in a
declarative way. In contrast, the quintessential problem of impure functional and
even more so imperative languages is that state is potentially scattered all over
the place. And even where this is not the case in practice, proving this property
is hardly possible.

2.3 ETS-aware components

We are particularly interested in the non-functional properties of code execution.
Hence, any component not only comes with functional contracts, as sketched out
before, but additionally with non-functional contracts concerning energy, time
and security (and potentially more in the future).

These three non-functional properties are inherently different in nature. Ex-
ecution time and energy consumption can be measured, depend on a concrete
execution machinery and vary between different hardware scenarios. In contrast,
security, more precisely algorithmic security, depends on the concrete imple-
mentation of a component, for example using different levels of encryption, etc.
However, different security levels almost inevitably incur different computational
demands and, thus, are likely to expose different runtime behaviour in terms of
time and energy consumption as well.

Knowledge about non-functional properties of components is at the heart
of our approach. It is this information that drives our scheduling and mapping
decisions to solve the given optimisation problem (e.g. minimising energy con-
sumption) under constraints (e.g. execution deadlines and minimum security
requirements).

2.4 Multi-version components

As illustrated in Fig. 2, a component may have multiple versions with identi-
cal functional behaviour, but with different implementations and, thus, different
energy, time and (possibly) security contracts. Multi-version components add
another degree of freedom to the scheduling and mapping problem that we ad-
dress: selecting the best fitting variant of a component under given optimisation
objectives and constraints.

Energy-, time and security-aware multi-core coordination 5

output

state

code<name>

ETS−contracts

code<name>

ETS−contracts

component

state*

Functional
contracts:

* *input output

input

<name>

Fig. 2: Multi-version component with in-
dividual energy, time and security con-
tracts

Take as an example our reconnais-
sance drone use case, that we will ex-
plore in more detail in Section 4. A
drone could adapt its security proto-
col for communication with the base
station in accordance with chang-
ing mission state: low security while
taking off or landing, medium secu-
rity while navigating to/from mission
area, high security during mission.
Continuous adaptation of security lev-
els results in less computing and, thus,
in energy savings that could be ex-
ploited for longer flight times.

Our solution is to provide different versions of the same component (similar to
[24]) and to select the best version regarding mission state and objectives based
on the scheduling strategy. For the time being, we only support off-line version
selection, but scenarios with online version control, as sketched out above, are
on our agenda.

2.5 Component interplay

Components are connected via FIFO channels to exchange data, as illustrated in
Fig. 3. Depending on application requirements, components may start computing
at statically determined time slots (when all input data is guaranteed to be
present) or may be activated dynamically by the presence of all required input
data. Components may produce output data on all or on selected output ports.

output

state

input

output

state

input

output

state

data

data

data

data

code<name>

ETS−contracts

code<name>

ETS−contracts

code<name>

ETS−contracts

code<name>

ETS−contracts

code<name>

ETS−contracts

code<name>

ETS−contracts

code<name>

ETS−contracts

code<name>

ETS−contracts

component

Functional
contracts:

component

Functional
contracts:

component

ObjectDetection

Functional
contracts:

component

Functional
contracts:

ImageCapture

OpticalFlow

input

DecisionMaking

output

state

input

Fig. 3: Illustration of data-driven component interplay via FIFO channels

6 J. Roeder, B. Rouxel, S. Altmeyer, C. Grelck

3 Coordination Language

Our coordination language focuses on the design of arbitrary synchronous data-
flow-oriented applications. It describes a graph structure where vertices are com-
ponents (actors, tasks) while edges represent dependencies between components.
A dependency/edge defines a data exchange between a source and a sink through
a FIFO channel. Such a data item, called token, can have different types, from
primitive types to more elaborate structures.

Similar to periodic task models [18] a data-flow graph instance is called an
iteration. A job is a component instance inside an iteration. As usual we re-
quire graphs to be acyclic (i.e. DAGs). The DAG iteratively executes until the
end of time (or platform shutdown). The job execution order follows the (afore-
mentioned) constraint that job i must finish before job i+1. However, iteration
j+1 can start before the completion of iteration j as long as dependencies are
satisfied. This allows us to exploit job parallelism, e.g. pipelining [26].

Fig. 4 presents the grammar of our coordination language written in pseudo-
Xtext style. In the following we describe each production rule in more detail.

3.1 Program header

Rule Application (Fig. 4, line 1) describes the root element of our application. It
is composed of the application name, a deadline and a period. All times refer to
one iteration of the graph; they can be given in, for instance, hours, milliseconds,
hertz or clock cycles.

Rule Datatype (Fig. 4, line 9) declares the data types used throughout the
coordination specification. One data type declaration consists of the type’s name,
followed by a string representation of its implementation in user code (i.e. the
actual C type like int or struct FooBar) and, optionally, by the size in bytes. The
size information allows for further analysis, e.g. regarding memory footprint. The
string representation of the type’s implementation is needed for code generation.

3.2 (Multi-version) Components

A component in our coordination DSL (Fig. 4, line 11) consists of a unique
name, three sets of ports and a number of additional properties. Multi-version
components (see Section 2.4) feature a number of versions, where each version
consists of a unique name and the additional properties, now specific to each
version. The simplified syntax for single-version components is motivated by
their abundance in practice.

Ports represent the interface of a component. The inports specify the data
items (or tokens) consumed by a component while the outports specify the data
items (or tokens) that a component (potentially) produces. The third set of ports,
introduced by the keyword state, are both input ports and output ports at the
same time, where the output ports are short-circuited to the corresponding input
ports, as explained in Section 2.2.

Energy-, time and security-aware multi-core coordination 7

1 Application: ’app’ ID ’{’
2 ’deadline ’ TIME
3 ’period ’ TIME
4 ’datatypes ’ ’{’ Datatype+ ’}’
5 ’components ’ ’{’ Component+ ’}’
6 ’edges ’ ’{’ Edge+ ’}’
7 ’}’;
8
9 Datatype: ’(’ ID ’,’ STRING (’,’ UINT)?;
10
11 Component: ID ’{’
12 (’inports ’ ’:’ ’[’ Port* ’]’)?
13 (’outports ’ ’:’ ’[’ Port* ’]’)?
14 (’state’ ’:’ ’[’ Port* ’]’)?
15 (Properties | Version +)
16 ’}’;
17
18 Port: ’(’ ID (’,’ INT)? ’,’ DatatypeRef ’)’;
19
20 Properties: (’deadline ’ TIME)?
21 (’period ’ TIME)?
22 (’arch’ STRING)*
23 (’security ’ UINT)?
24
25 Version: ’version ’ ID ’{’ Properties ’}’;
26
27 Edge: SimpleEdge | BroadcastEdge | DataOrEdge
28 | SchedOrEdge | EnvOrEdge;
29
30 SimpleEdge: OutPort ’->’ InPort;
31
32 BroadcastEdge: OutPort ’->’ InPort (’&’ InPort)+;
33
34 DataOrEdge: OutPort ’->’ InPort
35 (’|’ OutPort ’->’ InPort)+;
36
37 SchedOrEdge: OutPort ’->’ InPort (’|’ InPort)+;
38
39 EnvOrEdge: OutPort ’->’ InPort ’where’ STRING
40 (’|’ InPort ’where’ STRING)+;
41
42 OutPort: CompRef (’.’ OutPortRef)?
43
44 InPort: CompRef (’.’ InPortRef)?

Fig. 4: Coordination language pseudo-Xtext grammar

8 J. Roeder, B. Rouxel, S. Altmeyer, C. Grelck

A port specification includes a unique name, the token multiplicity and a
data type identifier. Token multiplicities are optional and default to one. They
allow components to consume a fixed number of tokens on an input port at
once, to produce a fixed number of tokens on an output port at once or to keep
multiple tokens of the same type as internal (pseudo) state. The firing rule for
components is amended accordingly and requires (at least) the right number
of tokens on each input port. Typing ports is useful to perform static type
checking and to guarantee that tokens produced by one component are expected
by a subsequent component connected by an edge. To start with we require type
equality, but we intend to introduce some form of subtyping at a later stage,

Our three non-functional properties behave differently. While the security
level is an algorithmic property of a component (version), energy and time crit-
ically depend on the execution platform. Therefore, we encode the (application-
specific) security (level) as an integer number in the code, but not energy and
time information. We keep the coordination code platform-independent and ob-
tain energy and time information from a separate data base (to be elaborated
on in Section 5).

3.3 Dependencies

Dependencies (or edges) represent the flow of tokens in the graph. Their spec-
ification is crucial for the overall expressiveness of the coordination language.
We support a number of constructions to connect output ports to input ports
(Fig. 4, line 27). In the following we illustrate each such construction with both
a graphical sketch and the corresponding textual representation.

2 B
x y

A 1

A.x -> B.y

(a) Simple edge

q

A

B

C

z

y
x

3

1

2

6

A.x -> B.z
A.y -> C.q

(b) Multiple edges

1

A

B

C
x

z

1

2
y

A.x -> B.y & C.z

(c) Broadcast edge

Fig. 5: Various edge construction examples

Fig. 5a presents a simple edge between the output port x of component A
and the input port y of component B. In our example the output port has a
multiplicity of one token while the input port has a multiplicity of two tokens.
We show token multiplicities in Fig. 5a for illustration only. In the coordination
program token multiplicities are part of the port specification (Fig. 4, line 18),

Energy-, time and security-aware multi-core coordination 9

not the edge specification (line 30). Coming back to the example of Fig. 5a,
component A produces one output token per activation, but component B only
becomes activated once (at least) two tokens are available on its input port.
Thus, component A must fire twice before component B becomes activated.

Fig. 5b shows an extension of the previous dependency construction where
component A produces a total of four tokens: one on port x and three on port y.
Component B expects two tokens on input port z while sink component C expects
a total of six tokens on input port q. These examples can be extended to fairly
complex dependency graphs.

Fig. 5c shows a so-called broadcast edge between a source component A pro-
ducing one token and two sink components B and C consuming two tokens and
one token, respectively (corresponding to Fig. 4, line 32). This form of compo-
nent dependency duplicates the token produced on the output port of the source
component and sends it to the corresponding input ports of all sink components.
Token multiplicities work in the very same way as before: any tokens produced
by a source component go to each sink component, but sink components only
become activated as soon as the necessary number of tokens accumulate on their
input ports. A broadcast edge does not copy the data associated with a token,
only the token itself. Hence, components B and C in the above example will
operate on the same data and, thus, are restricted to read access.

Components with a single input port or a single output port are very com-
mon. In these cases port names in edge specifications can be omitted, as they
are not needed for disambiguation.

q

A

B

C

z

y
x

A.x -> B.z
| A.y -> C.q

(a) Data-dependent

S
A

B

C
x

z

y

A.x -> B.y | C.z

(b) Scheduler-dependent

E
A

B

C
x

z

y

A.x -> B.y
where "Cexpr"

| C.z
where "Cexpr"

(c) Environment-
dependent

Fig. 6: Data-, scheduler- and environment-dependent edges

Fig. 6a illustrates a data-driven conditional dependency (corresponding to
Fig. 4, line 34). In this case, component B and component C are dependent on
component A, but only one is allowed to actually execute depending on which
output port component A makes use of. If at the end of the execution of A a

10 J. Roeder, B. Rouxel, S. Altmeyer, C. Grelck

token is present on port x then component B is fired; if a token is present on
port y then component C is fired. If no tokens are present on either port at
the end of the execution of A then neither B nor C are fired. This enables a
powerful mechanism that can be used in control programs where the presence
of a stimulus enables part of the application. For example, in a face recognition
system an initial component in a processing pipeline could detect if there are
any person on an image. If so, the image is forwarded to the subsequent face
recognition sub-algorithms; otherwise, it is discarded.

Fig. 6b allows conditional dependencies driven by the scheduler (correspond-
ing to Fig. 4, line 37. Similar to the previous case, component B and component
C depend on component A, but only one is allowed to actually execute depend-
ing on a decision by the scheduler. For example, if the time budget requested by
component B is lower than that requested by component C, the scheduler can
choose to fire component B instead of C. Such a decision could be motivated by
the need to avoid a deadline miss at the expense of some loss of accuracy.

Fig. 6c allows conditional dependencies driven by the user (corresponding to
Fig. 4, line 39). In this case components B and C again depend on component A,
but this time the dependency is guarded by a condition. If the condition evaluates
to true then the token is sent to the corresponding route. There is no particular
evaluation order for conditions, and tokens are simultaneously sent to all sink
components whose guards evaluate to true. Like in the case of the broadcast
edge all fired components receive the very same input data. If no guard returns
true, the token is discarded.

The guards come in the form of strings as inline C code. The code generator
will literally place this code into condition positions in the generated code. The
user is responsible for the syntactic and semantic correctness of these C code
snippets. This is not ideal with respect to static validation of coordination code,
but similar to, for instance, the if-clause in OpenMP. On the positive side, this
feature ensures maximum flexibility in application design without the need for
a fully-fledged C compiler frontend, which would be far beyond our means.

For example, the Cexpr could contain a call to a function get_battery that
enquires about the battery charge status. The coordination program may choose
to fire all subsequent components as long as the battery is well charged, but only
some as the battery power drains. Or, it may fire different components altogether,
changing the system behaviour under different battery conditions.

4 Example use case reconnaissance drone

We illustrate our coordination approach by means of a use case that we de-
velop jointly with our project partners University of Southern Denmark and
Sky-Watch A/S [25]. Fixed-wing drones can stay several hours in the air, mak-
ing them ideal equipment for surveillance and reconnaissance missions. In ad-
dition to the flight control system keeping the drone up in the air, our drone
is equipped with a camera and a payload computing system. Since fixed-wing
drones are highly energy-efficient, computing on the payload system does have a

Energy-, time and security-aware multi-core coordination 11

noticeable impact on overall energy consumption and, thus, on mission length.
We illustrate our coordination approach in Fig. 7; the corresponding coordina-
tion code is shown in Fig. 8. We re-use the original application building blocks
developed and used by Sky-Watch A/S.

Image Capturing

Object Detector

Implementations:

Tiny Darknet

Darknet

OpenCV

Video Encryption

Implementations:

Encryption 1

Encryption 2

Encryption 3

Ground Speed
State:

• Previous frame

Decision Send Message

Save Video

Legend

Source

Sink

Component

Implementation

Broadcast:

Forwarder:

Synchronizer:

Fig. 7: Reconnaissance drone use case coordination model

The drone’s camera system takes pictures in predefined intervals. Our Im-
ageCapture component represents this interface to the physical world. Global
period and deadline specifications correspond to the capture frequency of the
camera. The non-standard data types declared in the datatypes section of the
coordination program are adopted from the original application code. We use
the C types in string form for code generation and require that corresponding C
type definitions are made available to the backend C compiler via header files.

Images are broadcast to three subsequent components. The VideoEncryption
component encrypts the images of the video stream and forwards the encrypted
images to follow-up component SaveVideo that stores the video in persistent
memory for post-mission analysis and archival. Video encryption comes with
three different security levels. For simplicity we just call them Encryption1, En-
cryption2 and Encryption3. Different encryption levels could be used, for in-
stance, for different mission environments, from friendly to hostile.

The drone also performs on-board analyses of the images taken. These are
represented by our components ObjectDetector and GroundSpeed. Object de-
tection can choose between three algorithms with different accuracy, time and
energy properties: Darknet3, Tiny Darknet4, OpenCV. The ground speed esti-
mator works by comparing two subsequent images from the video stream. This
is the only stateful component in our model. The results of object detection and
ground speed estimation are synchronised and fed into the follow-up component

3 https://pjreddie.com/darknet/
4 https://pjreddie.com/darknet/tiny-darknet/

12 J. Roeder, B. Rouxel, S. Altmeyer, C. Grelck

Decision that combines all information and decides whether or not to notify the
base station about a potentially relevant object detected.

Transmission of the message is modelled by the sink component SendMes-
sage, where the action returns to the physical world. To implement dynamic
adaptation to dynamically changing mission phases, as sketched out in Section
2.4, we would need multiple versions of this component with different security
levels as well. However, we leave dynamic adaptation to future work for now.

As Fig. 8 demonstrates, our coordination language allows users to specify
non-trivial cyber-physical applications in a concise and comprehensible way. The
entire wiring of components only takes a few lines of code. Our approach facili-
tates playing with implementation variations and, thus, enables system engineers
to explore the consequences of design choices on non-functional properties at an
early stage. Note that all ports in our example have a token multiplicity of one,
and we consistently make use of default ports where components only feature a
single input port or a single output port.

5 Coordination tool chain

Coordination file

 Non-Functional
 Properties files

Syntactic &
semantic
analyses

Scheduling
policy generator

Code
generator

Components
object files

Target
compiler & linker

Binary file

Config file

Coordination Compiler

Fig. 9: Coordination workflow

Figure 9 illustrates our coordi-
nation tool chain; its four main
inputs are:

1. the coordination program,
as described in Section 3;

2. timing and energy informa-
tion per component : pro-
vided by timing/energy har-
vesting tools such as AbsInt
aiT [12] for a specific archi-
tecture;

3. object files: provided by a
C-compiler such as WCC
[10], containing binary code
for each component (ver-
sion).

4. a config file with configu-
ration information, e.g. tar-
get hardware, security-level
mission specifications, com-
piler passes to apply, etc.

For syntactic and semantic analysis, we use the parser generator ANTLR to
derive a C++ parser from an Xtext grammar specification that is very similar to
the one shown in Fig. 4. This implementation choice provides us with a graphical
editor plug-in for the Eclipse IDE for free5. The resulting parser validates the
5 https://www.eclipse.org/Xtext/

Energy-, time and security-aware multi-core coordination 13

app drone {
deadline 50Hz
period 50Hz
datatypes {

(frame, "jpegFrame *")
(num, "uint32_t ")
(enc, "encryptedData *")
(string, "char *")

}
components {

ImageCapture { outports [(out, frame)] }
Encryption {

inports [(in, frame)]
outports [(out, enc)]
version Encryption1 {security 4}
version Encryption2 {security 6}
version Encryption3 {security 9}

}
ObjectDetector {

inports [(in, frame)]
outports [(obj, num) (frame, frame)]
version TinyDarknet {arch "cpu/big"}
version Darknet {arch "cpugpu"}
version OpenCV {arch "cpugpu"}

}
GroundSpeed {

inports [(in, frame)]
outports [(speed, num)]
state [(s, frame)]

}
Decision {

inports [(obj, num) (frame, frame) (speed, num)]
outports [(msg, string)]

}
SaveVideo { inports [(in, enc)] }
SendMessage { inports [(msg, string)] }

} edges {
ImageCapture -> Encryption & ObjectDetector & GroundSpeed
Encryption -> SaveVideo
ObjectDetector.obj -> Decision.obj
ObjectDetector.frame -> Decision.frame
GroundSpeed -> Decision.speed
Decision -> SendMessage

} }

Fig. 8: Coordination program for drone use case

14 J. Roeder, B. Rouxel, S. Altmeyer, C. Grelck

syntax and creates an abstract syntax tree (AST), on which we validate a number
of semantic rules:

– ports refer to well defined data types;
– edges connect existing components;
– edges connect output ports with input ports;
– versions target available architectures.

Type checking entails validating that output and input ports connected by
an edge use equivalent types. Using standard graph terminology this can be
formalised as

∀src, sink ∈ E : srctype = sinktype (1)

Deadlock checking in our context entails static detection of stable token con-
sumption/production rates. Formally, the number of tokens produced by a com-
ponent (vertex) must coincide with the sum of tokens expected by all successor
components:

∀v ∈ V : vprod =
∑

p∈Vsucc

pcons (2)

Likewise, the number of tokens consumed by a component must match the
sum of tokens produced by all predecessor components:

∀v ∈ V : vcons =
∑

p∈vpred

pprod (3)

The second block of our coordination tool chain in Fig. 9 is the scheduling
policy generator, which depends on configuration parameters provided by the
user. In the case of static offline scheduling, the scheduling policy generator gen-
erates a schedule table with locations and release times for each component [22,
23]. In the case of dynamic online scheduling it performs a schedulability analysis
for which we have adapted the techniques of Melani et al [19] or, alternatively,
those of Casini et al [8].

Offline and online schedulers both have their specific benefits and draw-
backs: offline schedulers are easy to implement (e.g. with alarms) and, as all
release times are decided a-priori, scheduling overhead is minimal. However, of-
fline schedulers are not work-conserving. Should a component finish quicker than
suggested by its worst-case execution time, the corresponding core stays idle un-
til the subsequent release time of some component. In contrast, online schedulers
are work-conserving and, thus, more efficient in practice. However, this efficiency
comes at the cost of higher runtime overhead and implementation difficulty since
we need a mechanism that decides at runtime which component to execute next.

Whether to opt for offline or online scheduling depends on the application
scenario at hand. Our tool chain merely facilitates users to make this choice. For
offline scheduling we provide both an ILP-based solution [22] and a heuristic for
larger use cases, where the solving an ILP proves to be too time-consuming.

Code generation is the final step in our tool flow. For the coordination part
of an application, we generate C-code that manages components and their in-
teraction through threads and processes according to the configured scheduling

Energy-, time and security-aware multi-core coordination 15

policy, including releasing, synchronisation, and communication of components.
In a final step the generated C-code is compiled by a platform-specific C com-
piler and linked with the likewise compiled component implementations into an
executable binary, ready to be deployed to the platform of choice.

We successfully applied our tool chain to the drone use-case presented in
Section 4. At the time of writing we are able to generate a static schedule (both
ILP- and heuristics-based) that optimises the overall energy consumption while
meeting all time and security constraints. Our project partner Sky-Watch A/S
successfully tested this code on an actually flying drone. We are still in the
process of evaluating the outcome of these experiments compared to the original
hand-coded software of Sky-Watch A/S. We envision in the very near future to
have our code generator ready to produce dynamically scheduled applications.

6 Related work

Coordination is a well established computing paradigm with a plethora of lan-
guages, abstractions and approaches, surveyed in [9]. Yet, we are neither aware
of any adoption of the principle in the broader domain of mission-critical cyber-
physical systems, nor are we aware of energy-, time- or security-aware approaches
to coordination similar to our approach.

In the area of exogenous coordination languages we mention the work on Reo
[4]. The objective of Reo is in the modelling and formal property verification of
coordination protocols. Reo has a graphical syntax, in which every Reo program
is a labeled directed hypergraph. Reo further has a (or rather many) formal se-
mantics [17]. Compared to our work, Reo is a much more theoretical approach
to exogenous coordination, whereas our objective lies in the creation of a practi-
cal (and pragmatic) DSL to create executable energy-, time- and security-aware
programs running on concrete machinery.

Another example of an exogenous coordination language is S-Net [14], from
which we draw inspiration and experience for our proposed design. However,
S-Net merely addresses the functional aspects of coordination programming and
has left out any non-functional requirements, not to mention energy, time and
security, in particular.

A notable exception in the otherwise fairly uncharted territory of resource-
aware (functional) languages is Hume [16]. Hume was specifically designed with
real-time systems in mind, and, thus, guarantees on time (and space) consump-
tion are key. However, the main motivation behind Hume was to explore how
far high-level functional programming features, such as automatic memory man-
agement, higher-order functions, polymorphism, recursion, etc can be supported
while still providing accurate real-time guarantees.

Bondavalli et al. [7] present a simple in-the-large programming language to
describe the structure of a graph-based application. However, they only model
what we call components and simple edges, whereas their simple language neither
accounts for multi-version components nor for complex communication struc-
tures, not to mention any notion of non-functional properties.

16 J. Roeder, B. Rouxel, S. Altmeyer, C. Grelck

A term related to coordination is algorithmic skeletons. Merely as examples
we mention FastFlow [2] and Musket [20]. Again, all work in this area that we
are aware of in one way or another focuses on the trade-off between programming
efficiency and execution performance, whereas our focus is on energy, time and
security as non-functional properties.

Lustre [15, 6] was designed to program reactive system, such as automatic
control and monitoring systems. In contrast to general-purpose programming
language, Lustre models the flow of data. The idea is to represent actions done
on data at each time tick, like in an electronic circuit. The tick can be extended
to represent periods and release times for tasks, but still an action is required to
describe outputs for each tick (like reusing the last produced data).

Lustre is synchronous which seems necessary for time-sensitive applications.
However, Lustre does not decouple the program source code from its structure.
The flow of data is extracted by the compiler through data dependencies of
variables. We aim at expressing the flow of data with a much simpler and more
explicit approach. We also act at a higher level by focusing on the interaction of
components considered as black boxes.

In [3] Lustre is extended by meta-operators to integrate a complete model-
based design tool from a high-level Simulink model to a low-level implementa-
tion. Still, this extension, called Lustre++, does not separate the design of the
program structure from actual feature implementation and remains at a too low
level to only represent application structure as we intend to do.

The StreamIT [27] language also describes graph-based streaming applica-
tions, but it is restricted to fork-join graphs while we need to support arbitrary
graphs, possibly with multiple sources and/or sinks.

The Architecture Analysis & Design Language (AADL) [11] targets real-
time system design. It provides formal modeling concepts for the description
and analysis of application architectures in terms of distinct components and
their interactions. AADL supports early prediction and analysis with respect to
performance, schedulability and reliability.

7 Conclusion

We propose the TeamPlay coordination language and component technology for
the high-level design and development of cyber-physical systems. Our coordina-
tion DSL allows users to specify non-trivial streaming applications in a few lines
of code while treating crucial non-functional properties such energy, time and
security as first-class citizens throughout the application design process.

We describe a complete tool flow from syntactic and semantic validation of
coordination programs to code generation for typical off-the-shelf heterogeneous
multi-core hardware for cyber-physical systems. Our tool flow includes a variety
of offline and online scheduling and mapping techniques that form a tool box,
from which the user can choose the most appropriate combination with respect
to application needs.

Energy-, time and security-aware multi-core coordination 17

We apply our approach to a real-world use case: a mission-critical reconnais-
sance drone. We demonstrate the merits of our approach in terms of specification
conciseness. An initial version of our tool chain is functional, and we have run
preliminary experiments on an actually flying drone. However, the outcome of
these experiments is still under analysis and beyond the scope of this paper.

Our work continues in multiple directions. We currently work on a number
of further application use cases, among others a car park monitoring system,
a satellite communication system and a camera pill application from the medi-
cal domain. Further experience with these additional use cases will most likely
motivate us to refine the design of our coordination DSL.

Implementation-wise we plan to extend and refine the various scheduling and
mapping options. Our code generator currently expects a Linux-like environment
with a certain level of operating system support. This is a realistic assumption
for many cyber-physical systems, but others run in more bare-metal environ-
ments, e.g. where the form factor requires minimal computing hardware. Our
more long-term vision is to adapt our coordination technology for safety-critical
applications that must be secured against component failure or cyber attacks.

References

1. Achten, P., Plasmeijer, M.: The ins and outs of Clean I/O. Journal of Functional
Programming 5(1), 81–110 (1995)

2. Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: high-level
and efficient streaming on multicore. In: Programming Multi-core and Many-core
Computing Systems. Wiley (2017)

3. Alras, M., Caspi, P., Girault, A., Raymond, P.: Model-based design of embedded
control systems by means of a synchronous intermediate model. In: International
Conference on Embedded Software and Systems. pp. 3–10. IEEE (2009)

4. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14(3), 329–366 (2004)

5. Arbab, F.: Composition of interacting computations. In: Goldin, D., Smolka, S.,
Wegner, P. (eds.) Interactive Computation, pp. 277–321. Springer (2006)

6. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., De Si-
mone, R.: The synchronous languages 12 years later. Proceedings of the IEEE
91(1), 64–83 (2003)

7. Bondavalli, A., Strigini, L., Simoncini, L.: Dataflow-like languages for real-time
systems: issues of computational models and notation. In: 11th Symposium on
Reliable Distributed Systems (SRDS’92). pp. 214–221. IEEE (1992)

8. Casini, D., Biondi, A., Nelissen, G., Buttazzo, G.: Partitioned fixed-priority
scheduling of parallel tasks without preemptions. In: 2018 IEEE Real-Time Sys-
tems Symposium (RTSS’18). pp. 421–433. IEEE (2018)

9. Ciatto, G., Mariani, S., Louvel, M., Omicini, A., Zambonelli, F.: Twenty years
of coordination technologies: State-of-the-art and perspectives. In: International
Conference on Coordination Languages and Models (COORDINATION’18). pp.
51–80. Springer (2018)

10. Falk, H., Lokuciejewski, P., Theiling, H.: Design of a wcet-aware C compiler. In:
2006 IEEE/ACM/IFIP Workshop on Embedded Systems for Real Time Multime-
dia (ESTIMedia’06). pp. 121–126. IEEE (2006)

18 J. Roeder, B. Rouxel, S. Altmeyer, C. Grelck

11. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The architecture analysis and design lan-
guage (AADL): An introduction. Tech. rep., Carnegie-Mellon University, Pitts-
burgh, USA, Software Engineering Institute (2006)

12. Ferdinand, C., Heckmann, R.: aiT: worst-case execution time prediction by static
program analysis. In: Building the Information Society, pp. 377–383. Springer
(2004)

13. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
munications of the ACM 35(2), 97–107 (1992)

14. Grelck, C., Scholz, S.B., Shafarenko, A.: Asynchronous stream processing with
S-Net. International Journal of Parallel Programming 38(1), 38–67 (2010)

15. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow pro-
gramming language LUSTRE. Proceedings of the IEEE 79(9), 1305–1320 (1991)

16. Hammond, K., Michaelson, G.: Hume: a domain-specific language for real-time
embedded systems. In: International Conference on Generative Programming and
Component Engineering. pp. 37–56. Springer (2003)

17. Jongmans, S.S., Arbab, F.: Overview of thirty semantic formalisms for Reo. Sci-
entific Annals of Computer Science 22(1), 201–251 (2012)

18. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM (JACM) 20(1), 46–61 (1973)

19. Melani, A., Bertogna, M., Bonifaci, V., Marchetti-Spaccamela, A., Buttazzo, G.C.:
Response-time analysis of conditional dag tasks in multiprocessor systems. In: 27th
Euromicro Conference on Real-Time Systems (RTS’15). pp. 211–221. IEEE (2015)

20. Rieger, C., Wrede, F., Kuchen, H.: Musket: A domain-specific language for high-
level parallel programming with algorithmic skeletons. In: 34th ACM Symposium
on Applied Computing (SAC’19). pp. 1534–1543. ACM, New York, NY, USA
(2019)

21. Ritchie, D.M., Kernighan, B.W., Lesk, M.E.: The C programming language. Pren-
tice Hall Englewood Cliffs (1988)

22. Roeder, J., Rouxel, B., Altmeyer, S., Grelck, C.: Interdependent multi-version
scheduling in heterogeneous energy-aware embedded systems. In: 13th Junior Re-
searcher Workshop on Real-Time Computing (JRWRTC 2019) of the 27th Inter-
national Conference on Real-Time Networks and Systems (RTNS 2019) (2019)

23. Rouxel, B., Skalistis, S., Derrien, S., Puaut, I.: Hiding communication delays in
contention-free execution for SPM-based multi-core architectures. In: 31st Euromi-
cro Conference on Real-Time Systems (ECRTS’19) (2019)

24. Rusu, C., Melhem, R., Mossé, D.: Multi-version scheduling in rechargeable energy-
aware real-time systems. Journal of Embedded Computing 1(2), 271–283 (2005)

25. Seewald, A., Schultz, U.P., Roeder, J., Rouxel, B., Grelck, C.: Component-based
computation-energy modeling for embedded systems. In: Proceedings Companion
of the 2019 ACM SIGPLAN International Conference on Systems, Programming,
Languages, and Applications: Software for Humanity. SPLASH Companion 2019,
ACM, New York, NY, USA (2019)

26. Tendulkar, P., Poplavko, P., Galanommatis, I., Maler, O.: Many-core scheduling of
data parallel applications using SMT solvers. In: Digital System Design (DSD’14),
17th Euromicro Conference. pp. 615–622. IEEE (2014)

27. Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: A language for streaming
applications. In: 11th International Conference on Compiler Construction (CC’02).
pp. 179–196. Springer (2002)

28. Wadler, P.: The Essence of Functional Programming. In: 19th ACM Symposium
on Principles of Programming Languages (POPL’92). pp. 1–14. ACM Press (1992)

