
Strategy Switching: Smart Fault-tolerance for
Resource-constrained Real-time Applications
Lukas Miedema1, Benjamin Rouxel1,2 and Clemens Grelck1

1University of Amsterdam (UvA), Amsterdam, Netherlands
2University of Modena and Reggio Emilia (Unimore), Modena, Italy

Abstract
Software-based fault-tolerance is an attractive alternative to hardware-based fault-tolerance, as it allows for the use of cheap
Commercial Off The Shelf hardware. However, software-based fault-tolerance comes at a cost, requiring computing the same
results multiple times to allow for the detection and mitigation of faults. Resource-constrained real-time applications may
not be able to afford this cost. At the same time, the domain of a real-time task may allow it to tolerate a fault, provided it
does not occur in consecutive iterations of the task. In this paper, we introduce a new way to deploy fault-tolerance called
strategy switching. Our method targets Single Event Upsets by running different subsets of tasks under fault-tolerance at
different points in time. We do not bound the number of faults in a window, nor does our method assume that tasks under
fault-tolerance cannot still fail. Our technique does not require a minimal amount of additional compute resources for fault-
tolerance. Instead, our method optimally utilizes any available compute resources for fault-tolerance for resource-constrained
real-time applications.

Keywords
Cyber-physical Systems, Resource Constraints, Fault-tolerance, Single Event Upsets, Weakly Hard Real-time

1. Introduction
As transistor density increases and gate voltages de-
creases, the frequency of transient faults or single event
upsets (SEUs) increases [1]. Hence, the need for fault-
tolerance against these types of faults is growing.

Fault-tolerance techniques can either be implemented
in hardware or in software. Software-based fault-
tolerance is attractive due to its ability to protect work-
loads on Commercial Off The Shelf (COTS) hardware.
However, providing general-purpose fault-tolerance
against SEUs typically requires redundant execution, of-
ten in the form of Triple Modular Redundancy [2] (TMR).
TMR uses two-out-of-three voting to obtain a majority
and mitigate the effects of a SEU. TMR can be imple-
mented at different levels of granularity, e.g. at the com-
piler level like SWIFT-R [3], but also at the OS task level
as implemented in OS Task Level Redundancy [4]. How-
ever, the overhead remains: instrumenting a binary with
SWIFT-R increases its execution time by 99 percent. As
such, constrained real-time systems may have insuffi-
cient processing resources to allow all tasks to run with
fault-tolerance. However, for applications structured as
a set of periodic tasks, software-based fault-tolerance al-
lows the application of fault-tolerance to only a subset
of the task set.

Control tasks may be able to tolerate non-consecutive

CERCIRAS WS01: 1st Workshop on Connecting Education and
Research Communities for an Innovative Resource Aware Society
Envelope-Open l.miedema@uva.nl (L. Miedema); benjamin.rouxel@unimore.it
(B. Rouxel); c.grelck@uva.nl (C. Grelck)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

deadline misses, which has led to the adoption of the
weakly hard model [5]. A task that is unable to provide a
result may not result in catastrophe, provided that in the
next period it can provide a result. Per the weakly hard
model, each task 𝑖 has an (𝑚𝑖, 𝑘𝑖) constraint, indicating
that the task must complete at least 𝑚𝑖 times successfully
out of every 𝑘𝑖 times. 𝑘𝑖 is said to be the window size.
We use this (𝑚𝑖, 𝑘𝑖) constraint with 𝑚𝑖 < 𝑘𝑖 to deliver
more effective fault-tolerance to resource-constrained
systems. For example, consider a task set with just two
tasks A and B, where only one task can be run under
fault-tolerance at a time. Furthermore, both task A and B
can tolerate non-consecutive deadline misses. Running
task A under fault-tolerance and task B without would
leave task B vulnerable to SEUs. However, we could
more optimally make use of the scarce fault-tolerance
by switching between protecting task A and task B in
successive iterations of the task set. Tasks under fault-
tolerance may still fail (e.g. TMR reaches no majority),
and these cases can be detected. When the fault-tolerance
technique has failed to protect task A, task A should be
protected again in the next iteration of the task set to
ensure it does not experience a consecutive fault.

Contribution We propose a new approach for improv-
ing fault-tolerance for real-time applications running
on resource-constrained systems by strategy switching.
We minimize the effective unmitigated fault-rate by se-
lecting which tasks are to be run under fault-tolerance.
Our approach recognizes that the importance of protect-
ing a task may change over time due to earlier faults
or lack thereof, and as such runs different tasks un-

mailto:l.miedema@uva.nl
mailto:benjamin.rouxel@unimore.it
mailto:c.grelck@uva.nl
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


der fault-tolerance at different times. By exhaustively
searching all patterns in which fault-tolerance can be
applied, our method optimally utilizes limited available
computational resources for fault-tolerance in resource-
constrained real-time applications.

Organization In section 2 we introduce our task and
fault model. Our method uses a state machine, which is
introduced in section 3. In section 4, we formalize the
construction of the state machine. Then, in section 5, we
discuss how our method can lower the consecutive fault
rate for an example task set. We explain the flexibility of
our method by extending it to alternative task and fault
models in section 6. Several pieces of related work exist,
which are covered in section 7. The paper is concluded
in section 8, and finally in section 9 we discuss various
future directions for this technique.

2. System models
Task model We assume a set of periodic tasks Γ =
{𝜏1...𝜏𝑛} with a single, global period and deadline 𝐷 such
that the period is equal to or larger than the deadline (no
pipelining). Furthermore, we initially assume that each
task can afford one (non-consecutive) deadline miss (an
(𝑚𝑖, 𝑘𝑖) constraint of (1,2)), and that each task is equally
important. In section 6, wewill discuss how some of these
assumptions can be relaxed to support a wide variety of
task models.

Fault model We use the Poisson distribution as an ap-
proximation for the worst-case fault rate of SEUs, which
was argued to be a good approximation by Broster et al.
[6]. We do not assume universal fault detection: only
when the task runs under a fault-tolerance scheme can
a fault be detected and mitigated. When a task does not
run with fault-tolerance, it is not known whether or not
it succeeded. We use the term catastrophic fault to de-
scribe an unmitigated fault occurring in two consecutive
iterations of a task that can tolerate a single unmitigated
fault, i.e. the task 𝑖 has an (𝑚𝑖, 𝑘𝑖) = (1,2) constraint. Fur-
thermore, a catastrophic fault also occurs when a task
that cannot tolerate non-consecutive faults experiences
an unmitigated fault, i.e. the task has a (1,1) constraint.
We do not consider constraints beyond 𝑘𝑖 = 2 in this
paper.

Fault mitigation We assume the presence and imple-
mentation of a particular fault-tolerance scheme, and
that any task can be run under that scheme. In this paper,
we assume that SEUs always go undetected in tasks not
under fault-tolerance. Finally, we assume the scheme
implements fault-detection and fault-mitigation. Our

model allows the fault mitigation to fail (e.g. due to suc-
cessive SEUs during both replicas of a task under TMR),
but assumes that it is known when fault mitigation fails.

Other definitions Given the complexity and number
of symbols used in this paper, a table of all symbols and
terms has been compiled in Table 1. Each symbol or term
used will be defined prior to use, as well as being listed
in the table.

3. Strategy Switching State
Machine

To both swiftly select a new subset of the task set to run
under fault-tolerance while also making optimal deci-
sions, we precompute for each situation the next best
subset of tasks to run under fault-tolerance. The result of
this is the strategy state machine, which is made available
to the online component. The strategy state machine is
a bipartite state machine, consisting of strategy states
and result states. An example of such a state machine is
shown in Figure 1.

The architecture of our strategy switching approach
distinguishes between an online part at runtime, as well
as an offline part executing ahead-of-time not beholden
to any real-time constraints. The offline component pre-
pares the state machine, which is then available for online
playback.

Online We introduce a strategy switching component,
which plays back the strategy state machine, taking tran-
sitions based on observed faults as the application runs.
At runtime, this component selects a single strategy 𝑠
ahead of every execution of the task set, which becomes
active. The strategy 𝑠 dictates which tasks run under
fault-tolerance (Γ𝑠), and which ones do not (Γ ⧵ Γ𝑠). Fault-
tolerance techniques are typically not a silver bullet solu-
tion, and unmitigated faults may still occur in tasks in Γ𝑠.
Furthermore, fault-tolerance techniques can often report
the fact that they failed to mitigate a fault (e.g. no consen-
sus in triple modular redundancy). After executing all
tasks, the online component uses this information from
the execution of the task set to select the matching result
𝑟 from the state machine. This result reflects the success
or fail state, or probability thereof, of each of the tasks.
Each possible result 𝑟 directly maps to its best successor
strategy, which is applied to the next iteration of the task
set.

Offline The full set of strategies 𝑠 ∈ S is computed
ahead of time, as well as the transition relation Δ from
any given result 𝑟 ∈ R to the next best successor strategy
Δ(𝑟) = 𝑠. Strategies which are not schedulable are not



Table 1
Definitions of used symbols and terms

Item Meaning
Task model
Γ Set of all tasks, Γ = {𝜏1...𝜏𝑛}
𝜏𝑖 ∈ Γ Task 𝑖 ∈ Γ, e.g. 𝜏𝐴 is task A
𝐶𝑖 Worst Case Execution Time (WCET) of task i
𝐷 Global deadline (shared by all tasks)
Fault model
𝜆 Fault rate (Poisson)
(𝑚𝑖, 𝑘𝑖) Constraint indicating task 𝑖 has to execute successfully for

at least 𝑚𝑖 iterations out of every 𝑘𝑖 iterations
Unmitigated
fault

Fault in a task not mitigated by a fault-tolerance technique

Catastrophic
fault

Unmitigated fault that leads to the (𝑚𝑖, 𝑘𝑖) constraint of the
task being violated

States in the state machine
S Set of all strategies
𝑠 ∈ S A strategy
Γ𝑠 ⊂ Γ The tasks protected under strategy 𝑠
𝑠𝐴,𝐵 A strategy protecting task A and B, i.e. Γ𝑠𝐴,𝐵 = {𝜏𝐴, 𝜏𝐵}
R Set of all results
𝑟 ∈ R A result
𝑟𝐴,𝐵 A result where task A (𝜏𝐴) succeeded and task B (𝜏𝐵) failed
Transitions in the state machine
Δ The transition function for the strategy state machine
Δ(𝑠) The set of successors of strategy 𝑠 as per the transition func-

tion Δ. Due to the bipartite nature of the state machine, this
is always a set of results.

Δ(𝑟) The successor of result 𝑟 as per transition function Δ. Always
a single element, and due to the bipartite nature of Δ it is
always a strategy.

Scoring function
𝛿(...) Scoring function (lower is better), provides steady-state

catastrophic fault rate, i.e. the average probability of a catas-
trophic fault for any iteration of the task set

𝛿(Δ) Scoring function applied to the entire state machine
𝛿(𝑠, Δ) Probability of a catastrophic fault when leaving strategy 𝑠

considering transition function Δ
𝛿(𝑟 , Δ) Probability of a catastrophic fault when leaving result 𝑟 con-

sidering transition function Δ
𝛿(𝑟 ,𝑠) Probability of a catastrophic fault when transitioning from 𝑟

to 𝑠
Probabilities
𝑝𝑖 Probability of an unmitigated fault in task 𝜏𝑖 when no fault-

tolerance is used
𝑞𝑖 Probability of an unmitigated fault in task 𝜏𝑖 when fault-

tolerance is used

𝑠𝐴

𝑟𝐴

𝑟𝐴

𝑠𝐵

𝑟𝐵

𝑟𝐵

𝐴

𝐴

𝐵

𝐵

Figure 1: A strategy state machine for Γ = {𝜏𝐴,𝜏𝐵}

included in S . Furthermore, strategies which are domi-
nated by other strategies (i.e. all tasks that are protected
by one strategy are also protected by another) are also
not considered in S .

We develop an algorithm to compute Δ, such that our
choice of Δ provides the lowest steady-state rate of catas-
trophic faults.

Example State Machine An example of such a state
machine is shown in Figure 1, where there are two strate-
gies S = {𝑠𝐴, 𝑠𝐵}. This state machine is not the optimal
state machine for this task set, but gives a non-trivial
example of what such a state machine may look like.
Such a state machine is constructed by the offline compo-
nent, and made available to the runtime. Each strategy
protects only one task (either task 𝐴 or task 𝐵). Finally,
fault-tolerance may fail and if it fails this information
is available to the strategy switching component. With
these assumptions, each strategy has two potential suc-
cessors: one where the task under protection succeeds
and one where it fails (e.g. 𝑟𝐴 and 𝑟𝐴 for strategy 𝑠𝐴).
Each result state 𝑟 has just one successor strategy Δ(𝑟),
e.g. Δ(𝑟𝐴) = 𝑠𝐵 in Figure 1. The following sequence of
actions may take place at runtime, as per Figure 1;

1. To start, the runtime initializes by picking a ran-
dom strategy, say 𝑠𝐵, and applies fault tolerance
accordingly. By picking 𝑠𝐵, task 𝜏𝐵 will be exe-
cuted with fault-tolerance, while task 𝜏𝐴 will not.

2. The task set is executed (iteration 1).

3. At the end of the iteration, data from the fault-
tolerance applied to task 𝜏𝐵 is used to select a
result. If 𝜏𝐵 fails, the result 𝑟𝐵 is selected. How-
ever, let us assume 𝜏𝐵 succeeded, and select result
𝑟𝐴 accordingly. No information about the success
or failure of 𝜏𝐴 is known.

4. 𝑟𝐵 links to strategy 𝑠𝐴, which is selected.

5. By switching to 𝑠𝐴, task 𝜏𝐴 will be executed with
fault-tolerance, while task 𝜏𝐵 will not.

6. The task set is executed (iteration 2).

7. At the end of the iteration, data from the fault-
tolerance of task 𝜏𝐴 indicates that task 𝜏𝐴 has
failed, letting us select result 𝑟𝐴.

8. 𝑟𝐴 links to strategy 𝑠𝐴, which is selected.

∗. The process continues...

Note that there is no involved selection procedure for
the initial strategy (strategy 𝑠𝐵 in the example). Our
approach is only concerned with obtaining the lowest
steady-state fault rate of the application, which is in no
way impacted by the choice of initial strategy.

4. Evaluating State Machines
One way to find the optimal state machine transition
function Δ for a given S is to enumerate all possible
transition functions, score each transition function, and



select the best one. To do so, we define the state ma-
chine scoring function 𝛿(Δ). The output of this scoring
function is the steady-state rate of catastrophic faults.
Specifically, 𝛿(Δ) is the weighted probability of a catas-
trophic fault occurring during any iteration of the task
set when applying strategy switching according to the
transition function Δ.

To evaluate 𝛿(Δ), we compute the steady-state proba-
bility distribution of the transition function Δ (e.g. using
linear algebra). The steady-state probability distribution
provides a probability 𝑃(𝑠|Δ) of finding the state machine
in strategy 𝑠 at an arbitrarily chosen iteration of the task
set given Δ. Intuitively, as the number of iterations of
the task set approaches infinity, 𝑃(𝑠|Δ) is the fraction of
iterations spent with strategy 𝑠 active. The sum of these
fractions over all strategies is 1, i.e ∑𝑠∈S 𝑃(𝑠|Δ) = 1.

Let 𝛿(𝑠, Δ) be the probability of a catastrophic fault
occurring in strategy 𝑠. Together with 𝑃(𝑠|Δ), we can
now compute 𝛿(Δ):

𝛿(Δ) = ∑
𝑠∈S

𝑃(𝑠|Δ) ⋅ 𝛿(𝑠, Δ)

Catastrophic faults, by their definition, only occur
when an unmitigated fault occurs in two consecutive
iterations of the task set. To compute 𝛿(𝑠, Δ), we must
not just consider 𝑠, but also the successor of 𝑠. The succes-
sor of 𝑠 depends on what result 𝑟 is being chosen, which is
given by 𝑃(𝑟 |𝑠,Δ). Each 𝑟 has only one successor strategy
Δ(𝑟). Let Δ(𝑟) = 𝑠to . Thus, 𝛿(𝑠,Δ) can be expressed in
terms of 𝑟 and Δ(𝑟) = 𝑠to as follows:

𝛿(𝑠, Δ) = ∑
𝑟∈Δ(𝑠)

𝑃(𝑟 |𝑠) ⋅ 𝛿(𝑟 , 𝑠𝑡𝑜)

As 𝑠to is a strategy, 𝛿(𝑟 , 𝑠to) is independent of our choice
of Δ. 𝛿(𝑟 , 𝑠to) is equal to the probability that any task
experiences a fault both in 𝑟 as well as in 𝑠to :

𝛿(𝑟 , 𝑠to) = 1 −∏
𝜏𝑖∈Γ

1 − 𝑃(catastrophic fault in 𝜏𝑖|𝑟 ,𝑠to)

= 1 −∏
𝜏𝑖∈Γ

1 − 𝑃(fault in 𝜏𝑖|𝑟 ) ⋅ 𝑃(fault in 𝜏𝑖|𝑠to)

The probabilities 𝑃(fault in 𝜏𝑖|𝑟 ) and 𝑃(fault in 𝜏𝑖|𝑠to)
are computed based on the used fault-tolerance tech-
nique, if 𝜏𝑖 ∈ Γ𝑠to , the rate of faults combined with
the WCET of 𝜏𝑖, and information available in the result.
For example, a task without fault-tolerance may have
a chance of experiencing a fault with 𝑃(fault in 𝜏𝑖) =
1 − 𝑒−𝜆⋅𝐶𝑖 , where 𝐶𝑖 is the WCET of 𝜏𝑖. Likewise, a task
which was run under fault-tolerance according to the
previous strategy, and has succeeded according to result
𝑟, will have a 𝑃(fault in 𝜏𝑖|𝑟 ) = 0. We consider all SEUs
to be statistically independent events. To keep indepen-
dence, use the WCET instead of the average execution

time, as the execution times of tasks in the same task set
may not be independent. As such, our steady-state rate
of catastrophic faults 𝛿(Δ) provides an upper bound to
the true steady-state fault rate of the application.

Tractability The approach, as presented here, can eas-
ily become intractable for even small task sets. Many
state space reduction techniques can be realized in the
way the state machines are enumerated, which can con-
siderably lower the number of elements. If a candidate
state machine Δ contains disconnected sub-graphs, then
no unique steady state can be computed, and as such this
candidate can be pruned. Furthermore, the candidate
state machine may contain strategies that are ignored,
i.e. there is no path to that strategy from that same strat-
egy. When this is the case, the steady-state probability
𝑃(𝑠|Δ) is always 0. For such an ignored strategy, the suc-
cessor strategies of its results do not matter, and its many
ways of connecting to successor strategies need not be
individually examined. Finally, the domain itself my al-
low for significant state space reduction. For example,
if a precedence relation is added between tasks in the
task set over which data is communicated, the failure of
a preceding task may imply that the succeeding task is
destined to fail. These modifications impact the lattice
of strategies, and reduce the size of the schedulable and
non-redundant set of strategies S .

For completeness, we discuss the algorithmic complex-
ity of the (naïve) state machine construction algorithm as
presented in this paper. While the exact size of the state
space depends on a number of factors, such as the number
of available strategies S , the upper bound is considerable.

The time complexity of 𝛿(Δ) is O(|R| ⋅ ss(|S |)), where:

• |R| is the number of results

• |S | is the number of strategies

• ss(𝑛) provides an upper bound to the computation
of the steady state for 𝑛 strategies

To compute ss(𝑛), the steady-state matrix needs to be
computed. For this computation, the LAPACK driver rou-
tine DSEGD1 may be used, with a complexity of O(𝑛3),
resulting in ss(𝑛) = 𝑛3.

The number of strategies is up to all combinations of
tasks (|𝑆| ∈ O(|Γ|!)). At the same time, 𝛿(Δ) is computed
for every possible state machine. As each result can link
to any successor strategy, this yields up to |𝑆||𝑅| state
machines. Each strategy has ≤ 2|Γ𝑠| results, 2|Γ𝑠| ∈ O(2|Γ|)
and thus |𝑅| ∈ O(|Γ|! ⋅ 2|Γ|). Let 𝑛 = |Γ|, i.e. 𝑛 is the number
of tasks. Then, the final algorithmic time complexity is

1http://www.netlib.org/lapack/lug/node71.html



given:
O(|𝑆||𝑅| ⋅ |R| ⋅ ss(|S |)) =
O(|Γ|!|Γ|!⋅2

|Γ|| ⋅ |Γ|! ⋅ 2|Γ| ⋅ |Γ|!3) =
O(𝑛!𝑛!⋅2

𝑛
⋅ 𝑛! ⋅ 2𝑛 ⋅ 𝑛!3) ⊂

O(𝑛!𝑛!⋅2
𝑛
⋅ 2𝑛5) ≈

O(𝑛!𝑛!⋅2
𝑛
) ⊂

O(𝑛!2
2𝑛
)

It must be noted that this is by no means a tight upper
bound. In the next section, we will examine a task set
with |Γ| = 𝑛 = 3. This example requires examination of
only 64 candidate state machines, even though such an 𝑛
value would appear to be completely intractable as per
the above formulation.

5. Example
Let us consider an example task set Γ = {𝜏𝐴, 𝜏𝐵, 𝜏𝐶}, with
WCET values 𝐶𝐴 = 20, 𝐶𝐵 = 10 and 𝐶𝐶 = 10. We set
𝜆 = 10−3 for this example. For brevity, we abbreviate
the probability of no fault in task 𝜏𝑖 when not using fault-
tolerance as 𝑝𝑖:

𝑃(no fault in 𝜏𝑖|no FT) = 𝑒−𝜆⋅𝐶𝑖 = 𝑒−
𝐶𝑖
103

= 𝑝𝑖

As fault-tolerance technique, we use Triple Modular
Redundancy (TMR). We require a majority for TMR to
succeed, and assume there is no other way TMR can
fail (e.g. assume no unmitigated faults during voting). A
majority for TMR requires two or more copies of the task
to be in agreement. Like 𝑝𝑖, we abbreviate the probability
of no fault in task 𝜏𝑖 when using fault-tolerance as 𝑞𝑖:

𝑃(no fault in 𝜏𝑖|TMR) = 𝑝3𝑖 + (
3
2
)𝑝2𝑖 ⋅ (1 − 𝑝𝑖)

= 𝑞𝑖

With the WCET for each task available, we can then
compute the 𝑝𝑖 and 𝑞𝑖 values for all tasks:

𝜏𝐴 ∶ 𝑝𝐴 = 𝑒−20𝜆 = 0.9802 𝑞𝐴 = 𝑝3
𝐴 + 3(1 − 𝑝𝐴)𝑝2

𝐴 = 0.9988
𝜏𝐵 ∶ 𝑝𝐵 = 𝑒−10𝜆 = 0.9901 𝑞𝐵 = 𝑝3

𝐵 + 3(1 − 𝑝𝐵)𝑝2
𝐵 = 0.9997

𝜏𝐶 ∶ 𝑝𝐶 = 𝑒−10𝜆 = 0.9901 𝑞𝐶 = 𝑝3
𝐶 + 3(1 − 𝑝𝐶)𝑝2

𝐶 = 0.9997

Enumerating strategies For our chosen task set Γ,
there are eight possible subsets and as such eight possible

𝑠𝐴,𝐵,𝐶

𝑠𝐴,𝐵 𝑠𝐴,𝐶 𝑠𝐵,𝐶

𝑠𝐴 𝑠𝐵 𝑠𝐶

𝑠∅

Unschedulable

Schedulable

Redundant

Figure 2: Lattice of strategies for Γ = {𝜏𝐴, 𝜏𝐵, 𝜏𝐶}

strategies:

𝑠∅ ∶ Γ𝑠∅ = {} Γ ⧵ Γ𝑠∅ = {𝜏𝐴, 𝜏𝐵, 𝜏𝐶}
𝑠𝐴 ∶ Γ𝑠𝐴 = {𝜏𝐴} Γ ⧵ Γ𝑠𝐴 = {𝜏𝐵, 𝜏𝐶}
𝑠𝐵 ∶ Γ𝑠𝐵 = {𝜏𝐵} Γ ⧵ Γ𝑠𝐵 = {𝜏𝐴, 𝜏𝐶}
𝑠𝐶 ∶ Γ𝑠𝐶 = {𝜏𝐶} Γ ⧵ Γ𝑠𝐶 = {𝜏𝐴, 𝜏𝐵}
𝑠𝐴,𝐵 ∶ Γ𝑠𝐴,𝐵 = {𝜏𝐴, 𝜏𝐵} Γ ⧵ Γ𝑠𝐴,𝐵 = {𝜏𝐶}
𝑠𝐴,𝐶 ∶ Γ𝑠𝐴,𝐶 = {𝜏𝐴, 𝜏𝐶} Γ ⧵ Γ𝑠𝐴,𝐶 = {𝜏𝐵}
𝑠𝐵,𝐶 ∶ Γ𝑠𝐵,𝐶 = {𝜏𝐵, 𝜏𝐶} Γ ⧵ Γ𝑠𝐵,𝐶 = {𝜏𝐴}
𝑠𝐴,𝐵,𝐶 ∶ Γ𝑠𝐴,𝐵,𝐶 = {𝜏𝐴, 𝜏𝐵, 𝜏𝐶} Γ ⧵ Γ𝑠𝐴,𝐵,𝐶 = {}

Not all of these may be schedulable. If 𝑠𝐴,𝐵,𝐶 was
schedulable there would be no reason to use strategy
switching. Likewise, if only 𝑠∅ was schedulable, there
is no way to deploy limited fault-tolerance to this task
set. For the example, we assume that only strategies 𝑠∅,
𝑠𝐴, 𝑠𝐵, 𝑠𝐶 and 𝑠𝐵,𝐶 are determined to be schedulable by
a scheduler. The strategies form a lattice with 𝑠∅ as the
greatest lower bound, and 𝑠𝐴,𝐵,𝐶 as the least upper bound.
The lattice is shown in Figure 2. Figure 2 also reveals
redundant strategies, e.g. there’s no reason to choose 𝑠𝐵
when 𝑠𝐵,𝐶 is schedulable. As such, there is no need to
consider them. Let S = {𝑠𝐴, 𝑠𝐵,𝐶}.

TMR can fail to reach a consensus, and then this infor-
mation is available to the strategy selection component
in the form of a result. As such, in this example each
strategy 𝑠 has 2|Γ𝑠| possible results. For 𝑠𝐴 this is 𝑟𝐴 and
𝑟𝐴, and for 𝑠𝐵,𝐶 this is 𝑟𝐵,𝐶, 𝑟𝐵,𝐶, 𝑟𝐵,𝐶 and 𝑟𝐵,𝐶. These results
are shown in Figure 3a, which shows the strategy state
machine without successor relations for each result.

Evaluating transitions functions There are |S ||R| =
26 = 64 possible transition functions Δ, as all of the six
results needs to be linked to one of the two strategies.
We will not enumerate all of them, but two examples are
shown in Figure 3b and Figure 3c.

In this example, we will show how to evaluate 𝛿(Δ)
for the state machine in Figure 3b. Let this be Δ3b.



𝑠𝐴

𝑟𝐴

𝑟𝐴

𝐴

𝐴

𝑠𝐵,𝐶

𝑟𝐵,𝐶 𝑟𝐵,𝐶

𝑟𝐵,𝐶 𝑟𝐵,𝐶

𝐵,𝐶 𝐵,𝐶

𝐵,𝐶 𝐵,𝐶

(a) Partial state machine without successor relations for the
results

𝑠𝐴

𝑟𝐴

𝑟𝐴

𝐴

𝐴

𝑠𝐵,𝐶

𝑟𝐵,𝐶 𝑟𝐵,𝐶

𝑟𝐵,𝐶 𝑟𝐵,𝐶

𝐵,𝐶 𝐵,𝐶

𝐵,𝐶 𝐵,𝐶

(b) Switching statemachine choosing between 𝑠𝐴 and 𝑠𝐵,𝐶 based
on the result

𝑠𝐴

𝑟𝐴

𝑟𝐴

𝐴

𝐴

𝑠𝐵,𝐶

𝑟𝐵,𝐶 𝑟𝐵,𝐶

𝑟𝐵,𝐶 𝑟𝐵,𝐶

𝐵,𝐶 𝐵,𝐶

𝐵,𝐶 𝐵,𝐶

(c) Degenerate state machine always choosing 𝑠𝐴

Figure 3: Example state machines

1. Computing the steady-state probability of Δ3b.
The result states are “urgent” states, in which no
time can pass. In other words, the result states
themselves are not relevant for the steady-state
(i.e. the fraction of iterations of the task set spent
in state 𝑟 ∈ R is 0). As such, we remove these
states for the steady-state computation, linking
each strategy to multiple successor strategies.
The resulting state machine is a Discrete-Time
Markov Chain, where each time step is an iter-
ation of the task set Γ. The steady-state can be
computed using linear algebra. Let 𝑇 be the tran-
sition matrix for Δ3b with all results removed:

𝑇 = [
𝑃(𝑟𝐴|𝑠𝐴) 𝑃(𝑟𝐴|𝑠𝐴)

𝑃(𝑟𝐵,𝐶 ∪ 𝑟𝐵,𝐶 ∪ 𝑟𝐵,𝐶 ∪ 𝑟𝐵,𝐶|𝑠𝐵,𝐶) 0 ]

= [1 − 𝑞𝐴 𝑞𝐴
1 0 ] = [0.0012 0.9988

1 0 ]

We can compute the steady-state vector 𝑣 by solv-
ing 𝑣 = 𝑣𝑇.

𝑣 = 𝑣𝑇 ≈ (
1
21
2

)

Note that a unique steady-state vector 𝑣 need not
exist if there are two or more parts of the state
machine that are disconnected. For example, all
results of 𝑠𝐴 may link back to 𝑠𝐴, while all results
of 𝑠𝐵,𝐶 link back to 𝑠𝐵,𝐶. In such a case, the steady-
state is dependent on the initial state. However,
we can safely disregard state machines that de-
pend on the initial condition, as other state ma-
chines with identical steady-state behavior must
exist as well. If staying in 𝑠𝐴 provides the lowest
𝛿(Δ) value, then a state machine like shown in
Figure 3c would yield the exact same 𝛿(Δ) value
as a state machine where 𝑠𝐴 and 𝑠𝐵,𝐶 is discon-
nected with 𝑠𝐴 as the initial state.

2. Compute, for each result → strategy transition,
the 𝛿(𝑟 , 𝑠to) catastrophic fault probability.

𝛿(𝑟𝐴, 𝑠𝐵,𝐶) = 1− (1 − (0) ⋅ (1 − 𝑝𝐴))⋅
(1 − (1 − 𝑝𝐵) ⋅ (1 − 𝑞𝐵))⋅
(1 − (1 − 𝑝𝐶) ⋅ (1 − 𝑝𝐶))

= 5.87 ⋅ 10−6

𝛿(𝑟𝐴, 𝑠𝐴) = 1− (1 − (1) ⋅ (1 − 𝑞𝐴))⋅
(1 − (1 − 𝑝𝐵) ⋅ (1 − 𝑝𝐵))⋅
(1 − (1 − 𝑝𝐶) ⋅ (1 − 𝑝𝐶))

= 1358 ⋅ 10−6

𝛿(𝑟𝐵,𝐶, 𝑠𝐴) = 1− (1 − (1 − 𝑝𝐴) ⋅ (1 − 𝑞𝐴))⋅
(1 − (0) ⋅ (1 − 𝑝𝐵))⋅
(1 − (0) ⋅ (1 − 𝑝𝐶))

= 22.98 ⋅ 10−6

𝛿(𝑟𝐵,𝐶, 𝑠𝐴) = 1− (1 − (1 − 𝑝𝐴) ⋅ (1 − 𝑞𝐴))⋅
(1 − (1) ⋅ (1 − 𝑝𝐵))⋅
(1 − (0) ⋅ (1 − 𝑝𝐶))

= 9973 ⋅ 10−6

𝛿(𝑟𝐵,𝐶, 𝑠𝐴) = 1− (1 − (1 − 𝑝𝐴) ⋅ (1 − 𝑞𝐴))⋅
(1 − (0) ⋅ (1 − 𝑝𝐵))⋅
(1 − (1) ⋅ (1 − 𝑝𝐶))

= 9973 ⋅ 10−6

𝛿(𝑟𝐵,𝐴, 𝑠𝐴) = 1− (1 − (1 − 𝑝𝐴) ⋅ (1 − 𝑞𝐴))⋅
(1 − (1) ⋅ (1 − 𝑝𝐵))⋅
(1 − (1) ⋅ (1 − 𝑝𝐶))

= 19923 ⋅ 10−6

3. Using the calculated 𝛿(𝑟 , 𝑠to) values, compute a
𝛿(𝑠 ∈ S) value for each strategy.

𝛿(𝑠𝐴) =𝑃(𝑟𝐴|𝑠𝐴) ⋅ 𝛿(𝑟𝐴, 𝑠𝐵,𝐶)+



𝑃(𝑟𝐴|𝑠𝐴) ⋅ 𝛿(𝑟𝐴, 𝑠𝐴) =

7.6077 ⋅ 10−6

𝛿(𝑠𝐵,𝐶) =𝑃(𝑟𝐵,𝐶|𝑠𝐵,𝐶) ⋅ 𝛿(𝑟𝐵,𝐶, 𝑠𝐴)+
𝑃(𝑟𝐵,𝐶|𝑠𝐵,𝐶) ⋅ 𝛿(𝑟𝐵,𝐶, 𝑠𝐵,𝐶)+

𝑃(𝑟𝐵,𝐶|𝑠𝐵,𝐶) ⋅ 𝛿(𝑟𝐵,𝐶, 𝑠𝐵,𝐶)+

𝑃(𝑟𝐵,𝐶|𝑠𝐵,𝐶) ⋅ 𝛿(𝑟𝐵,𝐶, 𝑠𝐵,𝐶) =

29.69985 ⋅ 10−6

𝛿(𝑠) is the probability that a catastrophic fault
occurs by selecting strategy 𝑠. The bad score of
𝑠𝐵,𝐶 is not surprising: the Δ3b state machine is
not particularly clever as it chooses to switch to
strategy 𝑠𝐴 even with the knowledge that 𝜏𝐵 or
𝜏𝐶 has failed.

4. Finally, compute 𝛿(Δ3b) by taking the weighted
average of all 𝛿(𝑠) values by multiplying 𝛿(𝑠)
for each strategy by the steady-state probability
𝑃(𝑠|Δ3b) of being in that strategy.

𝛿(Δ3b) = 𝑃(𝑠𝐴) ⋅ 𝛿(𝑠𝐴) + 𝑃(𝑠𝐵,𝐶) ⋅ 𝛿(𝑠𝐵,𝐶)

= 1.814 ⋅ 10−5

This process is repeated for all 64 possible transition
functions. For brevity, we will not show the evaluation
of every single transition function here. Instead, Table
2 shows a subset of all possible Δ values. The columns
headed with a result show to which successor strategy
that result maps. For example, for the first evaluated
state machine Δ1(𝑟𝐴) = 𝑠𝐴. The best state machine is
also revealed, listed as Δ58. Finally, the last item in the
table is Δ∅, added as a reference. Δ∅ is the state ma-
chine with a single strategy 𝑠∅ which protects no tasks,
i.e. the behavior obtained when not using any form of
fault-tolerance. The best state machine is a 38.3-fold
improvement over this default. That is, the best state ma-
chine offers a 38.3 times lower rate of catastrophic failure
when compared to Δ∅. Finally, the table also shows two
state machines which perform no strategy switching, but
still use fault-tolerance. These are Δ1 and Δ64, staying in
𝑠𝐴 and 𝑠𝐵,𝐶 respectively. The strategy switching solution
Δ58 offers a 12.9 times lower rate of catastrophic faults
when compared to the best of these static solutions.

6. Extending the fault and task
model

6.1. Adding precedence relations
Directed Acyclic Graph scheduling is an extension to our
task model where precedence relations exist between

Table 2
Shortened table of all possibleΔ transition functions for Figure
3a

Δ 𝑟𝐴 𝑟𝐴 𝑟𝐵,𝐶 𝑟𝐵,𝐶 𝑟𝐵,𝐶 𝑟𝐵,𝐶 𝛿(Δ) ⋅ 105

Δ1 𝑠𝐴 𝑠𝐴 𝑠𝐴 𝑠𝐴 𝑠𝐴 𝑠𝐴 19.9355

Δ2 𝑠𝐵𝐶 𝑠𝐴 𝑠𝐴 𝑠𝐴 𝑠𝐴 𝑠𝐴 1.81421

Δ3 𝑠𝐴 𝑠𝐵𝐶 𝑠𝐴 𝑠𝐴 𝑠𝐴 𝑠𝐴 22.055
...

Δ56 𝑠𝐵𝐶 𝑠𝐵𝐶 𝑠𝐵𝐶 𝑠𝐴 𝑠𝐵𝐶 𝑠𝐵𝐶 39.489
Δ57 𝑠𝐴 𝑠𝐴 𝑠𝐴 𝑠𝐵𝐶 𝑠𝐵𝐶 𝑠𝐵𝐶 19.935
Δ58 𝑠𝐵𝐶 𝑠𝐴 𝑠𝐴 𝑠𝐵𝐶 𝑠𝐵𝐶 𝑠𝐵𝐶 1.54062

Δ59 𝑠𝐴 𝑠𝐵𝐶 𝑠𝐴 𝑠𝐵𝐶 𝑠𝐵𝐶 𝑠𝐵𝐶 22.054
Δ60 𝑠𝐵𝐶 𝑠𝐵𝐶 𝑠𝐴 𝑠𝐵𝐶 𝑠𝐵𝐶 𝑠𝐵𝐶 2.6115
Δ61 𝑠𝐴 𝑠𝐴 𝑠𝐵𝐶 𝑠𝐵𝐶 𝑠𝐵𝐶 𝑠𝐵𝐶 n/a3

Δ62 𝑠𝐵𝐶 𝑠𝐴 𝑠𝐵𝐶 𝑠𝐵𝐶 𝑠𝐵𝐶 𝑠𝐵𝐶 39.226
Δ63 𝑠𝐴 𝑠𝐵𝐶 𝑠𝐵𝐶 𝑠𝐵𝐶 𝑠𝐵𝐶 𝑠𝐵𝐶 39.226
Δ64 𝑠𝐵𝐶 𝑠𝐵𝐶 𝑠𝐵𝐶 𝑠𝐵𝐶 𝑠𝐵𝐶 𝑠𝐵𝐶 39.2265

Δ∅ n/a 59.0104
1 Example from Figure 3b (Δ2 = Δ3b)
2 Best (lowest) steady-state fault rate
3 No unique steady-state exists for this transition function
4 𝛿(Δ) of the task set without any form of fault-tolerance
5 Does not strategy switch, i.e. always stays in the same
strategy

A B

Figure 4: Task set Γ = {𝜏𝐴, 𝜏𝐵} with a precedence relation
between 𝜏𝐴 and 𝜏𝐵

tasks. While this has no impact on the strategy switch-
ing algorithm directly as it need not concern itself with
scheduling, it may add dependence to the success proba-
bility of a task. For this extension, we assume that when
a predecessor task fails (produces incorrect data), all suc-
cessor tasks fail as well due to operating on incorrect
data, even when not experiencing a SEU.

To support this assumption, the 𝛿(𝑟 , 𝑠to) cost function
needs to be modified to consider precedence relations.
Specifically, 𝑃(fault in 𝜏𝑖|𝑟 ) and 𝑃(fault in 𝜏𝑖|𝑠to) must be
replaced to not just consider if 𝜏𝑖 failed in isolation. Let
us call this precedence-aware probability the probability
of incorrect output.

𝑃(incorrect output 𝜏𝑖|𝑥) = 𝑃(fault in 𝜏𝑖|𝑥)⋅

∏
𝜏𝑗∈pred(𝜏𝑖)

𝑃(fault in 𝜏𝑗|𝑥)

Here, 𝑥 ∈ S ∪R is either a strategy or a result. pred(𝜏𝑖)
is the set of all direct and indirect predecessors of task
𝜏𝑖. This probability also includes the behavior of any
predecessor tasks.

Figure 4 shows an example task set with a precedence
relation. Consider the task set in this example with
two strategies: S = {𝑠𝐴, 𝑠𝐵}, protecting task 𝜏𝐴 and 𝜏𝐵



respectively. Each strategy has two outcomes, hence
R = {𝑟𝐴, 𝑟𝐴, 𝑟𝐵, 𝑟𝐵}. Let us consider 𝑃(fault in 𝜏𝐵|𝑟𝐴):
the result 𝑟𝐴 does not directly communicate anything
about the state of task 𝐵, however due to the prece-
dence relation we know it effectively failed. As such,
𝑃(incorrect output 𝜏𝐵|𝑟𝐴) = 1.

6.2. Selective fault-tolerance and
criticality

The task model can be extended to support het-
erogeneity in the ability of tasks to tolerate non-
consecutive faults. Let Γ𝑁 be the set of tasks which
cannot tolerate non-consecutive faults. Then, we
update 𝑃(catastrophic fault in 𝜏𝑖|𝑟 ,𝑠to) to consider non-
consecutive faults as catastrophic faults when 𝜏𝑖 ∈ Γ𝑁.

𝑃(catastrophic fault in 𝜏𝑖|𝑟 ,𝑠to =)

{
𝑃(fault in 𝜏𝑖|𝑟 ) ⋅ 𝑃(fault in 𝜏𝑖|𝑠to) if 𝜏𝑖 ∉ Γ𝑁
𝑃(fault in 𝜏𝑖|𝑟 ) else

The goal of the strategy state machine is to minimize
the rate of catastrophic faults. This may mean that the
rate of catastrophic faults is so low that even a single
fault is unlikely to occur across the lifetime of the system.
However, when used in soft real-time deployments, a
“catastrophic fault” may not be catastrophic while still
undesirable. In such a deployment, catastrophic faults
may be acceptable. The impact of a task experiencing
such a catastrophic fault may not be the same across
all tasks. As such, a priority function 𝑝(𝜏𝑖 ∈ Γ) can be
integrated into 𝛿(𝑟 , 𝑠to).

𝛿(𝑟 , 𝑠to) =

1 −∏
𝜏𝑖∈Γ

(1 − 𝑃(catastrophic fault in 𝜏𝑖|𝑟 ,𝑠to))𝑝(𝜏𝑖)

The 𝑝(𝜏𝑖) function assigns relative priority, where
higher is better. A task 𝜏𝑖 with 𝑝(𝜏𝑖) = 2 has twice the
importance as a task 𝜏𝑗 with 𝑝(𝜏𝑗) = 1. Note that this
change affects the meaning of the output 𝛿(Δ), which is
no longer the rate of catastrophic faults. If the impact of
a catastrophic fault in a task with 𝑝(𝜏𝑖) = 2 is equivalent
to two catastrophic faults in another task with 𝑝(𝜏𝑗) = 1,
then the final rate 𝛿(Δ) can be seen as the rate of catas-
trophic faults normalized to faults in 𝜏𝑗.

7. Related work
(𝑚𝑖, 𝑘𝑖) constraints have been used before in the domain of
real-time scheduling. Choi et al. [7] proposed a scheduler,
together with an efficient schedulability algorithm for
a sporadic task set with tasks under (𝑚𝑖, 𝑘𝑖) constraints.

This scheduler allows for scheduling task sets that would
normally not be schedulable, but utilizing their (𝑚𝑖, 𝑘𝑖)
constraints allows them to be scheduled.

Chen et al. [8] proposed a solution that similar to ours.
Their method offers fault-tolerance with the goal of re-
ducing the effective fault rate as well as lowering energy
consumption. Chen et al. proposes a static scheduling
technique called Static Pattern-Based Reliable Execution,
ensuring each (𝑚𝑖, 𝑘𝑖) constraint is respected in the pres-
ence of transient faults. Furthermore, they propose de-
laying the execution of their static pattern if no fault
is detected at runtime, opportunistically running more
unprotected instances of the task with the goal of sav-
ing energy. However, if the static pattern is found to be
unschedulable as per their schedulability test, their imple-
mentation is unable to provide a schedule that minimizes
the fault rate for a given resource-constrained real-time
system. While their approach offers more flexibility in
the task model (specifically the support for (𝑚𝑖, 𝑘𝑖) con-
straints with 𝑘𝑖 > 2), it does not consider that fault miti-
gation may fail. Our approach optimally lowers the fault
rate, regardless of the hardware constrains. Furthermore,
our approach recognizes that fault mitigation may fail,
and includes this in the calculation for lowering the fault
rate.

Gujarati et al. [9] contributed a technique for measur-
ing the fault rate of an applicationwith tasks under (𝑚𝑖, 𝑘𝑖)
constraints. Their technique provides an upper bound
for the fault probability per iteration of a Fault-tolerant
Single-Input Single-Output (FT-SISO) control loop, similar
to our 𝛿(Δ) output on a task set with precedence rela-
tions. Their technique hopes to provide transparency
to system designers, allowing analyzing the impact on
the reliablity when changing the hardware or software.
However, while their approach is aware of (𝑚𝑖, 𝑘𝑖) con-
straints, it does not provide schedules that utilize such
constraints. Instead, it merely includes them in the relia-
bility calculation.

The domain of strategy switching shares some aspects
with Mixed-Criticality (MC) systems. In an MC system,
the system switches between different levels of critical-
ity depending on the operating conditions of the system.
Tasks are assigned a criticality level, and when the sys-
tem criticality is higher than that of the task, the task
is not scheduled to guarantee the successful and timely
execution of tasks with a higher criticality level. Pathan
[10] combines MC with fault-tolerance against transient
faults. As is typical in MC research, as the level of critical-
ity increases, the pessimism increases. Pathan increases
the maximum fault rate when switching to a higher level
of criticality. In our approach we do not vary the pes-
simism of any parameter. Instead, we assume the 𝜆 pa-
rameter provides a suitable upper bound to the fault rate
in all conditions. Our approach offers some aspects typi-
cally not found in MC systems: while one could argue



that each strategy is really a criticality level, it is a criti-
cality level applied to a subset of the tasks (specifically
Γ𝑠). Finally, the approach by Pathan requires bounding
the number of faults that can occur in any window. As
such, passing their sufficient schedulability test will (un-
der their fault model) guarantee the system will never
experience a fault.

8. Conclusion
In this paper, we have shown how strategy switching
can be used to improve fault-tolerance for resource-
constrained systems. Our method makes effective use
of the ability to vary which tasks receive fault-tolerance.
It considers at the start of every iteration of the task set
what the best set of tasks is to protect. We have shown
how our method computes the optimal strategy state
machine for any given task set, minimizing the rate of
catastrophic faults. We have also shown the flexibility of
our method to be extended to support new task and fault
models.

9. Future work
In future work, we hope to improve the tractability of
our algorithm by both state space reduction algorithms
as well as by using heuristics.

Furthermore, we hope to extend the fault model to
distinguish between deadlinemisses and incorrect results.
We also hope to integrate tasks with (𝑚𝑖, 𝑘𝑖) constraints
with 𝑘𝑖 > 2. Additionally, we hope to integrate the natural
ability of tasks to detect faults into our task model, as
a SEU may for example lead to a segfault. Finally, we
hope to validate our approach using simulation-based
analysis.

Acknowledgments
The presentation of this paper was considerably im-
proved in response to comments provided by the anony-
mous reviewers, and we gratefully acknowledge their
insights and assistance.

This project has received funding from the European
Union’s Horizon 2020 research and innovation program
under grant agreement No. 871259 (ADMORPH project).
Additionally, this work is partially supported by CERCI-
RAS COST Action CA19135 funded by COST Association.

References
[1] I. Oz, S. Arslan, A survey on multithreading alterna-

tives for soft error fault tolerance, ACM Computing
Surveys (2019).

[2] R. E. Lyons, W. Vanderkulk, The use of triple-
modular redundancy to improve computer relia-
bility, IBM journal of research and development 6
(1962) 200–209.

[3] J. Chang, G. A. Reis, D. I. August, Automatic
instruction-level software-only recovery, in: Inter-
national Conference on Dependable Systems and
Networks (DSN’06), IEEE, 2006, pp. 83–92.

[4] S. A. Asghari, M. Binesh Marvasti, A. M. Rahmani,
Enhancing transient fault tolerance in embedded
systems through an OS task level redundancy ap-
proach, Future Generation Computer Systems 87
(2018) 58–65. doi:10.1016/j.future.2018.04.049 .

[5] G. Bernat, A. Burns, A. Liamosi, Weakly hard real-
time systems, IEEE transactions on Computers 50
(2001) 308–321.

[6] I. Broster, A. Burns, G. Rodriguez-Navas, Timing
analysis of real-time communication under electro-
magnetic interference, Real-Time Systems 30 (2005)
55–81.

[7] H. Choi, H. Kim, Q. Zhu, Job-class-level fixed pri-
ority scheduling of weakly-hard real-time systems,
in: 2019 IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS), 2019, pp.
241–253. doi:10.1109/RTAS.2019.00028 .

[8] K.-H. Chen, B. Bönninghoff, J.-J. Chen, P. Mar-
wedel, Compensate or ignore? Meeting control ro-
bustness requirements through adaptive soft-error
handling, in: Proceedings of the 17th ACM SIG-
PLAN/SIGBED Conference on Languages, Com-
pilers, Tools, and Theory for Embedded Systems,
LCTES 2016, Association for Computing Machin-
ery, New York, NY, USA, 2016, pp. 82–91. doi:10.
1145/2907950.2907952 .

[9] A. Gujarati, M. Nasri, B. B. Brandenburg, Quan-
tifying the resiliency of fail-operational real-time
networked control systems, in: S. Altmeyer
(Ed.), 30th Euromicro Conference on Real-Time
Systems (ECRTS 2018), volume 106 of Leibniz
International Proceedings in Informatics (LIPIcs),
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 2018, pp. 16:1–16:24. doi:10.
4230/LIPIcs.ECRTS.2018.16 .

[10] R. M. Pathan, Fault-tolerant and real-time schedul-
ing for mixed-criticality systems, Real-Time Sys-
tems 50 (2014) 509–547.

http://dx.doi.org/10.1016/j.future.2018.04.049
http://dx.doi.org/10.1109/RTAS.2019.00028
http://dx.doi.org/10.1145/2907950.2907952
http://dx.doi.org/10.1145/2907950.2907952
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.16
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.16

	1 Introduction
	2 System models
	3 Strategy Switching State Machine
	4 Evaluating State Machines
	5 Example
	6 Extending the fault and task model
	6.1 Adding precedence relations
	6.2 Selective fault-tolerance and criticality

	7 Related work
	8 Conclusion
	9 Future work

